• Title/Summary/Keyword: injection mass

Search Result 743, Processing Time 0.025 seconds

Manufacturing and Molding Technology of $500{\mu}m$ 8Cavity Injection Molding System (500um급 8캐비티 사출금형설계 제작 및 성형기술)

  • Lee, S.H.;Cho, K.H.;Lee, J.W.;Ko, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.444-447
    • /
    • 2008
  • Recently, the need of thin-walled injection molding and enhancement of its productivity is greatly increased. In this study, we designed and manufactured a injection molding system, which can mold a part with the thickness of $500{\mu}m$ and 8 cavity. And processing technique for the multi-cavity injection molding system, which is capable of mass productivity on the plastic parts, was considered. The problems of unbalance/imbalance on the molding process for the multi-cavity mold were predicted by numerical analysis using plastic injection molding commercial code. In addition, controllable system of melt front filling was introduced for a balanced filling using the mold temperature sensor on injection mold. It was shown that balanced filling with the suggested injection molding system was possible for $500{\mu}m$ plastic parts with 8 cavity layout.

  • PDF

A Study on the Injection Flow with Viscoelastic Effect (점탄성 효과를 가진 사출 유동에 관한 연구)

  • Jeon, Eon-Chan;Park, Jung-Woo;Kim, Soo-Yong;Lee, Chul-Jang;Ahn, Kwang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.25-29
    • /
    • 2008
  • In this paper, we design internal space in plunger-type low pressure vacuum injection molding machine from numerical study. And we study characteristic of viscoelastic flow for searching injection molding condition. Then the flow analysis was performed using the CAE S/W. The result shows optimal value of nozzle and hole in injection chamber. And we investigated qualitatively relationship between injection pressure and injection mass flow with variable shear rate

  • PDF

Effect of Fuel Injection Timing on the Performance Characteristics in an Si Engine (가솔린기관의 연료분사 시기가 기관성능에 미치는 영향)

  • 조규상;정연종;김원배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.144-152
    • /
    • 1996
  • In the sequential MPI system with one injection for each cycle, engine performance is influenced by the mixture conditions. It can be said that engine performance is improved by being better identical mixture formation conditions for all cylinders. As the fuel injection timing to the intake port effects on the mixture formation conditions and the engine performance, injection timing must be better adjusted to engine requirements. Engine behavior was clearly different depending on the injection time during intake storke. Therefore it was studied that injection timing of fuel effects on the engine performance I. e. combustion stability, COV(imep), A/F excursion, CO,HC emission concentration and fuel consumption. It was found that late intake-synchronous injection was deteriorated the combustion characteristics and performance characteristics, while early intake-synchronous infection resulted in favorable engine behavior.

  • PDF

The Variation of Thrust Distribution of the Rocket Nozzle Exit Plane with the Various Position of Secondary Injection (2차 분사의 위치 변화에 따른 로켓노즐 출구에서의 추력 분포 변화)

  • Kim, Sung-Joon;Lee, Jin-Young;Park, Myung-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.45-53
    • /
    • 2000
  • A numerical study is done on the thrust vector control using gaseous secondary injection in the rocket nozzle. A commercial code, PHOENICS, is used to simulate the rocket nozzle flow. A $45^{\circ}-15^{\circ}$ conical nozzle is adopted to do numerical experiments. The flow in a rocket nozzle is assumed a steady, compressible, viscous flow. The exhaust gas of the rocket motor is used as an injectant to control the thrust vector of rocket at the constant rate of secondary injection flow. The injection location which is on the wall of rocket is chosen as a primary numerical variable. Computational results say that if the injection position is too close to nozzle throat, the reflected shock occurs. On the other hand, the more mass flow rate of injection is needed to get enough side thrust when the injection position is moved too far from the throat.

  • PDF

EFFECTS OF SPLIT INJECTION AND OXYGEN-ENRICHED AIR ON SOOT EMISSIONS IN A DIESEL ENGINE

  • Nguyen, Khai;Sung, Nak-Won;Lee, Sang-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2965-2970
    • /
    • 2008
  • Effects of split injection and oxygen-enriched air on soot emissions in a DI diesel engine were studied by the KIVA-3V code. When split injection is applied, the second injection of fuel into a cylinder results in two separate stoichiometric zones which increases soot oxidation. As a result, soot emissions are decreased with split injection. When oxygen-enriched air is applied together with split injection, higher concentration of oxygen helps secondary combustion which results in a higher temperature in the cylinder. The increased temperature promotes growth reaction of acetylene with soot but doesn't improve the acetylene formation during the second injection of fuel. As more acetylene is consumed in the growth reaction of acetylene, the net acetylene mass in the cylinder is decreased, which leads to a decrease of soot formation. With an increase of soot oxidation caused by split injection, the soot emissions are decreased significantly. However, to avoid excessive NOx emissions with increased oxygen concentration, the level of oxygen concentration should be lower than 22% in volume.

  • PDF

One-Dimensional Analysis of Air-Water Two Phase Natural Circulation Flow (공기와 물의 이상 자연순환 유동의 1 차원 해석)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Jae-Cheol;Hong, Seong-Wan;Kim, Sang-Baik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2626-2631
    • /
    • 2007
  • Air-water two phase natural circulation flow in the T-HERMES (Thermo-Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow)-1D experiment has been evaluated to verify and evaluate the experimental results by using the RELAP5/MOD3 computer code. The RELAP5 results have shown that an increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not effective on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. The water level is not effective on the water circulation mass flow rate. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it is not effective on the local pressure.

  • PDF

Measurement of the Rate of Protein Synthesis in Chickens by HPLC/MS

  • Seo, S.S.;Coon, C.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.3
    • /
    • pp.137-143
    • /
    • 2004
  • The fractional synthesis rates(FSR) were measured with 2l-wk and 3l-wk-old broiler breeder pullets and hens to investigate the effect of sexual maturity on FSR. The FSR were obtained from chicken tissues and blood samples using High-Performance Liquid Chromatography/Mass Spectrometry(HPLC/MS). A L-l-13C, 15N -leucine saline solution was infused by bolus injection as a tracer into broiler breeder pullets in the experiment. A rapid HPLC/MS method was developed to measure the isotopic enrichments of leucine in plasma, tissue samples, and eggs. The enrichments of stable isotope leucine incorporated into protein and the enrichments of the stable isotope free leucine were measured in liver, breast muscle and blood samples. Two sets of experiments were conducted. In experiment one, 2l-wk-old, sexually immature broiler breeder pullets were divided into groups of three and blood samples were collected at 20 or 30 min intervals until 1.5 h from initial injection. The pullets were sacrificed in groups of three at varying time intervals for 7 h after injection. The liver, breast muscle and blood samples were removed for analysis. The FSR were estimated to be 8.7l%/day for liver, 4.06%/day for breast muscle, and 5.08%/day for blood samples in 30 minutes after injection from the enrichment ratios. In experiment two, sexually matured 3l-wk-old broiler breeder hens were assorted into groups of three and blood samples were obtained at 20 or 30 min intervals for 2 h. The FSR for blood samples were determined. The broiler breeder hens were sacrificed in groups of three at various time intervals until 7 h after injection and liver, breast muscle and blood samples were removed for analysis. The FSR were calculated to be 5.96%/day for liver. Eggs were collected from five chickens daily for 10 days after large bolus injection. The average of total enrichments of stable isotope in egg albumin was increased by 0.064% at 4 days after injection and was back to normal in 7 days.

A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine (직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구)

  • Kim, Gi-Bok;Choi, Il-Dong;Ha, Ji-Hoon;Kim, Chi-Won;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

Numerical Simulation on Equivalence Ratio Fluctuation at the Fuel Injection Hole with respect to Pressure Fluctuation in a Combustion Chamber (연소실내의 압력 변동에 따른 연료 분사구에서의 당량비 변동에 관한 수치해석)

  • Kim, Hyeon-Jun;Hong, Jung-Goo;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.27-35
    • /
    • 2006
  • It has been observed in experiments that combustion instability of low frequency (${\sim}$ 10Hz) results form the modulation of equivalence ratio at fuel injection hole when a pressure fluctuation propagates upwards along the channel of the burner under an unchoked fuel flow condition. In this study, a commercial program was used to determine how the fuel flow rate changed with respect to the pressure, velocity of the fuel flow and the mass fraction in a choked and an unchoked condition. The calculation focus on the upstream of the dump plane to know how the forced pressure with the fuel injection conditions affects the modulation of the equivalence ratio. Therefore, it is found that pressure fluctuation leads to oscillation of mass flow rate and then results in equivalence ratio modulation under the unchoked fuel flow condition.

  • PDF

Effect of Secondary Air Injection on Emission from Sludge Incineration in a Batch-type Internally Cycloned Circulating Fluidized Bed Combustor (배치형 내부 사이클론식 순환유동층 연소로내 2차 공기 주입에 의한 슬러지 소각 유해 배가스 저감효과)

  • Jang, Seuk-Don;Shin, Dong-Hoon;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.16-22
    • /
    • 2002
  • Combustion performance of an internally cycloned circulating fluidized bed for paper sludge was discussed through a series of batch type experiments. Operation parameters such as water content, feeding mass of sludge and secondary air injection rate were varied to find out the effect on the combustion performance, which was examined with carbon conversion rate and pollutant emission such as CO and NOx. A conventional solid fuel reaction was observed in the experiments of varying water content and feeding mass of the sludge, which is characterized with kinetic limited reaction zone, diffusion limited reaction zone and transition zone. Secondary air injection with swirl enhances the mixing of the gas phase as well as the solid phase, and improves combustion efficiency accompanied with higher carbon conversion rate and lower pollutant emission rate.

  • PDF