• Title/Summary/Keyword: initiation stress

Search Result 647, Processing Time 0.026 seconds

Antioxidant Enzyme Activity and Cell Membrane Stability of Korean Bermudagrass Genotypes Different in Ploidy at Dormant Stage (배수성이 다른 자생 버뮤다그래스의 휴면 전후 항산화 효소활성 및 세포막 안정성 변화)

  • Lee, Geung-Joo;Lee, Hye-Jung;Ma, Ki-Yoon;Jeon, Young-Ju;Kim, In-Kyung
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • Korean bennudagrass collections showed diverse genetic variations in their morphology, growth habit, and cytological aspects. Chromosome number and nuclear DNA content of the bennudagrasses indicated a ploidy level ranging from triploid (2n=3x) to hexaploid (2n=6x). In this study, we investigated the different responses of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase) and cell membrane stability of those bennudagrass cytotypes to lower temperature and shorter day length, which meets a dormant induction in Korea. All the antioxidant enzymes were found to be higher during dormant stage, while the heme-containing catalase which converts hydrogen peroxide ($H_2O_2$) to water and oxygen molecules was activated before dormant initiation in the three cytotypes except for hexaploid bennudagrass. The triploid and tetraploid which exhibited relatively finer leaves and a rapid establishment speed were found to show increased activities of superoxide dismutase and peroxidase enzyme. The malondialdehyde(MDA) which is a product of lipid peroxidation in the cell membrane damaged by the hydroxyl radical was increased in all cytotypes as temperature declined, and tri- and tetraploids which had more protective antioxidant enzymes demonstrated a significantly lower MDA production. Similarly electrolyte leakage was higher in penta- and hexaploidy, seemingly more damage to cell membrane when low temperature was implemented. Results indicated that antioxidant responses of different cytotypes were genetically specific, which needs to be investigated the relevance with the low temperature tolerance in the bermudagrass further at the molecular level.

Hydrogen peroxide inhibits Ca2+ efflux through plasma membrane Ca2+-ATPase in mouse parotid acinar cells

  • Kim, Min Jae;Choi, Kyung Jin;Yoon, Mi Na;Oh, Sang Hwan;Kim, Dong Kwan;Kim, Se Hoon;Park, Hyung Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.215-223
    • /
    • 2018
  • Intracellular $Ca^{2+}$ mobilization is closely linked with the initiation of salivary secretion in parotid acinar cells. Reactive oxygen species (ROS) are known to be related to a variety of oxidative stress-induced cellular disorders and believed to be involved in salivary impairments. In this study, we investigated the underlying mechanism of hydrogen peroxide ($H_2O_2$) on cytosolic $Ca^{2+}$ accumulation in mouse parotid acinar cells. Intracellular $Ca^{2+}$ levels were slowly elevated when $1mM\;H_2O_2$ was perfused in the presence of normal extracellular $Ca^{2+}$. In a $Ca^{2+}-free$ medium, $1mM\;H_2O_2$ still enhanced the intracellular $Ca^{2+}$ level. $Ca^{2+}$ entry tested using manganese quenching technique was not affected by perfusion of $1mM\;H_2O_2$. On the other hand, $10mM\;H_2O_2$ induced more rapid $Ca^{2+}$ accumulation and facilitated $Ca^{2+}$ entry from extracellular fluid. $Ca^{2+}$ refill into intracellular $Ca^{2+}$ store and inositol 1,4,5-trisphosphate ($1{\mu}M$)-induced $Ca^{2+}$ release from $Ca^{2+}$ store was not affected by $1mM\;H_2O_2$ in permeabilized cells. $Ca^{2+}$ efflux through plasma membrane $Ca^{2+}-ATPase$ (PMCA) was markedly blocked by $1mM\;H_2O_2$ in thapsigargin-treated intact acinar cells. Antioxidants, either catalase or dithiothreitol, completely protected $H_2O_2-induced$ $Ca^{2+}$ accumulation through PMCA inactivation. From the above results, we suggest that excessive production of $H_2O_2$ under pathological conditions may lead to cytosolic $Ca^{2+}$ accumulation and that the primary mechanism of $H_2O_2-induced$ $Ca^{2+}$ accumulation is likely to inhibit $Ca^{2+}$ efflux through PMCA rather than mobilize $Ca^{2+}$ ions from extracellular medium or intracellular stores in mouse parotid acinar cells.

MAPK Activation and Cell Viability after $H_2O_2$ Stimulation in Cultured Feline Ileal Smooth Muscle Cells

  • Song, Hyun-Ju;Jeong, Ji-Hoon;Lee, Dong-Kyu;Lee, Tai-Sang;Min, Young-Sil;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.6
    • /
    • pp.339-344
    • /
    • 2004
  • Recent data have shown the importance of oxidative stresses in the pathogenesis of inflammatory bowel disease, crohn's disease and ulcerative colitis. $H_2O_2$, reactive oxygen species (ROS) donor, has been reported to act as a signaling molecule involved in a variety of cellular functions such as apo/ptosis and proliferation. In the present study, we investigated viability of cultured ileal smooth muscle cells (ISMC) after stimulation with $H_2O_2$. Trypan blue method revealed that the cell viability of ISMC treated with 1 mM $H_2O_2$ was not different from that of controls at up to 2 h time point, while treatment of ISMC with 1 mM $H_2O_2$ for 48 h finally induced significant decrease in the cell viability. Therefore, we evaluated whether $H_2O_2$ was capable of ERKs activation in ISMC for the short-term exposure and examined whether tyrosine kinase was involved in the process of ERK activation by $H_2O_2$ in ISMC. We also investigated the effects of $H_2O_2$ on activation of SAPK/JNK and p38 MAP kinase in ISMC. Thus, ISMC were cultured and exposed to $H_2O_2$, and western blot analysis was performed with phosphospecific MAP kinase antibodies. Robust activation of ERK occurred within 30 min of 1 mM $H_2O_2$ treatment. $H_2O_2-induced$ ERK activation was attenuated by a tyrosine kinase inhibitor, genistein, indicating that tyrosine kinase was probably involved in the ERK activation by $H_2O_2$. $H_2O_2$ was a moderate activator of SAPK/JNK, while p38 MAP kinase was not activated by $H_2O_2$. We suggest that ERK activation induced by short-term $H_2O_2$ treatment plays a critical role in cellular protection in the early stage of response to oxidative stress. The present study suggests the necessity of identification of MAPK signaling pathways affected by ROS, since it could ultimately elucidate cellular consequences involved in initiation and perpetuation of intestinal tissue damage in the diseases such as crohn's disease and ulcerative colitis, resulted from excessive ROS.

Enzymatic characterization and Expression of 1-aminocycloprophane-1-carboxlyate deaminase from the rhizobacterium Pseudomonas flourescens

  • Lee, Gun-Woong;Ju, Jae-Eun;Kim, Hae-Min;Lee, Si-Nae;Chae, Jong-Chan;Lee, Yong-Hoon;Oh, Byung-Taek;Soh, Byoung-Yul
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.17-17
    • /
    • 2010
  • Ethylene, known as a stress hormone regulate wide developmental processes including germination, root hair initiation, root and shoot primordial formation and elongation, leaf and flower senescence and abscission, fruit ripening. The acceleration of ethylene biosynthesis in plant associated with environmental and biological stresses. 1-Aminocycloprophane-1-carboxlyate deaminase(ACCD) is an enzyme that cleaves ACC into and ammonia, a precursor of the plant hormone ethylene. Plant growth-promoting rhizobacteria (PGPR) having ACCD can decrease endogenous ACC level of tissue, resulting in reduced production of ethylene in plants. ACC deaminse was a key enzyme for protect stressed plants from injurious effects of ethylene. ACCD gene was encoded from Pseudomonas flourescens, PGPR and was cloned in Escherichia coli. We expressed the recombinant ACCD(rACCD) containing 357 amino acids with molecular weight 39 kDa that revealed by SDS-PAGE and western blot. The rACCD was purified by Ni-NTA purification system. The active form of rACCD having enzyme activity converted ACC to a-ketobutyrate. The optimal pH for ACC deaminase activity was pH 8.5, but no activity below pH 7.0 and a less severe tapering activity at base condition resulting in loss of activity at over pH 11. The optimal temperature of the enzyme was $30^{\circ}$ and a slightly less severe tapering activity at 15 - 30$^{\circ}$, but no activity over $35^{\circ}$. P. flourescens ACC deaminase has a highly conserved residue that plays in allowing substrate accessibility to the active sites. The enzymatic properties of this rACCD will provide an important reference for analysis of newly isolated ACCD and identification of newly isolated PGPR containing ACCD.

  • PDF

Fracture Analysis of Implant Components using Scanning Electron Microscope : Part II - Implant Retaining Screw (임플란트 구성요소의 파절면에 관한 주사전자현미경적 연구 : Part II - 임플란트 유지나사)

  • Lim, Kwang-Gil;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.373-388
    • /
    • 2010
  • Fracture causes serious problems in many instance of prosthetic failures. But it is hard to find the definite causes when fractures occur. Fractography encompasses the examination of fracture surfaces that contain features resulting from the interaction of the advancing crack with the microstructure of the material and the stress fields. All fractured specimens(implant retaining screw) retrieved from Gangneung-Wonju national university dental hospital for 3 years(from 2007 to 2009). After pretreatment of samples, the scanning electon microscope were used for surface examination and fracture analysis. In case of most of the fractured specimens, fracture took place by fatigue fracture and fractured surface represents fatigue striation. Fatigue striation indicate the progression of the crack front under cyclic loading, are characteristic of stage 2 crack growth. The site of crack initiation and stage 1 crack growth were not easily identified in any of the failure, presumably because of the complex microstructural features of the polycrystalline sample. In case of fractured by overload, dimpled or cleavage surface were observed. Using the interpretation of characteristic markings(ratchet mark, fatigue striation, dimple, cleavage et al) in fracture surfaces, failure events containing the crack origin, crack propagation, material deficiency could be understand. Using the interpretation of characteristic markings in fracture surfaces, cause and mechanism of fractures could be analyzed.

Quantitative Evaluation of Viability- and Apoptosis-Related Genes in Ascaris suum Eggs under Different Culture-Temperature Conditions

  • Yu, Yong-Man;Cho, You-Hang;Youn, Young-Nam;Quan, Juan-Hua;Choi, In-Wook;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.3
    • /
    • pp.243-247
    • /
    • 2012
  • Ascaris suum eggs are inactivated by composting conditions; however, it is difficult to find functional changes in heat-treated A. suum eggs. Here, unembryonated A. suum eggs were incubated at $20^{\circ}C$, $50^{\circ}C$, and $70^{\circ}C$ in vitro, and the gene expression levels related to viability, such as eukaryotic translation initiation factor 4E (IF4E), phosphofructokinase 1 (PFK1), and thioredoxin 1 (TRX1), and to apoptosis, such as apoptosis-inducing factor 1 (AIF1) and cell death protein 6 (CDP6), were evaluated by real-time quantitative RT-PCR. No prominent morphological alterations were noted in the eggs at $20^{\circ}C$ until day 10. In contrast, the eggs developed rapidly, and embryonated eggs and hatched larvae began to die, starting on day 2 at $50^{\circ}C$ and day 1 at $70^{\circ}C$. At $20^{\circ}C$, IF4E, PFK1, and TRX1 mRNA expression was significantly increased from days 2-4; however, AIF1 and CDP6 mRNA expression was not changed significantly. IF4E, PFK1, and TRX1 mRNA expression was markedly decreased from day 2 at $50^{\circ}C$ and $70^{\circ}C$, whereas AIF1 and CDP6 mRNA expression was significantly increased. The expressions of HSP70 and HSP90 were detected for 9-10 days at $20^{\circ}C$, for 3-5 days at $50^{\circ}C$, and for 2 days at $70^{\circ}C$. Taken together, incremental heat increases were associated with the rapid development of A. suum eggs, decreased expression of genes related to viability, and earlier expression of apoptosis-related genes, and finally these changes of viability- and apoptosis-related genes of A. suum eggs were associated with survival of the eggs under temperature stress.

Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network (초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 2001
  • The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.

  • PDF

Research on the Smoking Conditions of College Students and the Behavior and Awareness of Oral Hygiene (일부 대학생의 흡연 실태와 구강건강에 관한 인식 및 행태 조사연구)

  • Moon, Seon-Jeong;Kim, Han-Na;Ku, In-Young
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.258-266
    • /
    • 2012
  • This study was conducted to investigate the differences between smokers and non-smokers' oral hygiene and college students' smoking awareness. The survey was carried out based on the 260 college students enrolled in four-year universities located in Kyungbuk, Daegu, Gangwon-do. Collected date used the SPSS 17.0 to perform the frequency and cross-analysis. 1. The daily smoking amounts of less than half pack and the smoking duration of more than 1 year and less than 3 years were to be the highest. The initiation of smoking was triggered by the curiosity and the proximal social environment. The reason of smoking was to relieve stress and habitual smoking respectively. 2. There was a significant difference between smokers and non-smokers' tooth brushing time, regular dentist visit, recent dental admission, the purpose of dental visits, scaling and oral health education. 3. There was a significant difference between smokers and non-smokers' awareness of oral hygiene in the subjective oral hygiene status. 4. There was a significant difference between smokers and non-smokers' awareness towards the impact of second-hand, after meal and one or two cigarette smoking. Based on the above results, smokers lack the awareness of smoking and oral hygiene compared to non-smokers. Therefore, the activation and the development of programs for the smoking and oral hygiene education targeting college students are considered to be necessary.

Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature (Ni기 초내열합금 GTD111 DS의 고온 저주기 피로수명 예측)

  • Kim, Jin Yeol;Yoon, Dong Hyun;Kim, Jae Hoon;Bae, Si Yeon;Chang, Sung Yong;Chang, Sung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.765-770
    • /
    • 2017
  • GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, $760^{\circ}C$, $870^{\circ}C$, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and $760^{\circ}C$; however, tests conducted at $870^{\circ}C$ showed cyclic softening response. Stress relaxation was observed at $870^{\circ}C$ because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition

  • Soung, Nak-Kyun;Kim, Hye-Min;Asami, Yukihiro;Kim, Dong Hyun;Cho, Yangrae;Naik, Ravi;Jang, Yerin;Jang, Kusic;Han, Ho Jin;Ganipisetti, Srinivas Rao;Cha-Molstad, Hyunjoo;Hwang, Joonsung;Lee, Kyung Ho;Ko, Sung-Kyun;Jang, Jae-Hyuk;Ryoo, In-Ja;Kwon, Yong Tae;Lee, Kyung Sang;Osada, Hiroyuki;Lee, Kyeong;Kim, Bo Yeon;Ahn, Jong Seog
    • Experimental and Molecular Medicine
    • /
    • v.51 no.2
    • /
    • pp.1.1-1.14
    • /
    • 2019
  • Hypoxia-inducible factor-$1{\alpha}$ ($HIF-1{\alpha}$) mediates tumor cell adaptation to hypoxic conditions and is a potentially important anticancer therapeutic target. We previously developed a method for synthesizing a benzofuran-based natural product, (R)-(-)-moracin-O, and obtained a novel potent analog, MO-460 that suppresses the accumulation of $HIF-1{\alpha}$ in Hep3B cells. However, the molecular target and underlying mechanism of action of MO-460 remained unclear. In the current study, we identified heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) as a molecular target of MO-460. MO-460 inhibits the initiation of $HIF-1{\alpha}$ translation by binding to the C-terminal glycinerich domain of hnRNPA2B1 and inhibiting its subsequent binding to the 3'-untranslated region of $HIF-1{\alpha}$ mRNA. Moreover, MO-460 suppresses $HIF-1{\alpha}$ protein synthesis under hypoxic conditions and induces the accumulation of stress granules. The data provided here suggest that hnRNPA2B1 serves as a crucial molecular target in hypoxiainduced tumor survival and thus offer an avenue for the development of novel anticancer therapies.