• Title/Summary/Keyword: initial velocity model

Search Result 306, Processing Time 0.026 seconds

Experimental Study on Coefficient of air Convection with boundary layer and boiling effects (경계층과 비등효과를 고려한 외기대류계수에 관한 실험연구)

  • Choi Myoung sung;Kim Yun Yong;Song Young Chul;Woo Sang Kyun;Kim Jin Keun;Lee Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.711-714
    • /
    • 2004
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. In order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, boiling and layer effects. Finally, the prediction model for equivalent coefficient of air convection was theoretically proposed. The coefficient of air convection in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with types of form. For determining the initial coefficient of air convection, boiling effects must be considered. The coefficient of air convection is affected by boundary layer with respect to the distance from the surface.

  • PDF

Nonlinear Filtering Approaches to In-flight Alignment of SDINS with Large Initial Attitude Error (큰 초기 자세 오차를 가진 관성항법장치의 운항중 정렬을 위한 비선형 필터 연구)

  • Yu, Haesung;Choi, Sang Wook;Lee, Sang Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.468-473
    • /
    • 2014
  • This paper describes the in-flight alignment of SDINS (Strapdown Inertial Navigation Systems) using an EKF (Extended Kalman Filter) and a UKF (Unscented Kalam Filter), which allow large initial attitude error uncertainty. Regardless of the inertial sensors, there are nonlinear error dynamics of SDINS in cases of large initial attitude errors. A UKF that is one of the nonlinear filtering approaches for IFA (In-Flight Alignment) are used to estimate the attitude errors. Even though the EKF linearized model makes velocity errors when predicting incorrectly in case of large attitude errors, a UKF can represent correctly the velocity errors variations of attitude errors with nonlinear attitude error components. Simulation results and analyses show that a UKF works well to handle large initial attitude errors of SDINS and the alignment error attitude estimation performance are quite improved.

Calibration technique of gimballed inertial navigation system using the velocity error initialization (속도오차 초기화를 이용한 김블형 관성항법시스템의 교정기법)

  • 김천중;박정화;박흥원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.860-863
    • /
    • 1996
  • In this paper, we formulate the extended Kalman filter for calibration of gimballed inertial navigation system (GINS) at a pure navigation mode with 1500 ft/sec initial velocity and compare its performance to the linear Kalman filter's by using Monte-Carlo analysis method. It has been shown that estimation performance of the extended Kalman filter is better than that of the linear Kalman filter.

  • PDF

Crash Performance of a Straight Member for Various Section Shapes and Local Reinforcement (단면 형상 및 국부 보강에 따른 직선 부재의 충돌 성능)

  • Lee, Hunbong;Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.97-103
    • /
    • 2013
  • Crash performance of the straight member was studied by FE analysis. One end of model was fixed and the other end was impacted by 1,000kg rigid mass with velocity of 16.0m/sec. The maximum and mean load were discussed to compare crash performance. The members with various section shapes were analyzed and the flange location was changed. Also, spot weld points were added in the initial buckling region to investigate its effect. Final rectangular section model which has flanges at the center and reinforcement in initial buckling region showed high enhancement in crash performance.

A PARAMETRIC SENSITIVITY STUDY OF GDI SPRAY CHARACTERISTICS USING A 3-D TRANSIENT MODEL

  • Comer, M.A.;Bowen, P.J.;Sapsford, S.M.;Kwon, S.I.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.145-153
    • /
    • 2004
  • Potential fuel economy improvements and environmental legislation have renewed interest in Gasoline Direct Injection (GDI) engines. Computational models of fuel injection and mixing processes pre-ignition are being developed for engine optimisation. These highly transient thermofluid models require verification against temporally and spatially resolved data-sets. The authors have previously established the capability of PDA to provide suitable temporally and spatially resolved spray characteristics such as mean droplet size, velocity components and qualitative mass distribution. This paper utilises this data-set to assess the predictive capability of a numerical model for GDI spray prediction. After a brief description of the two-phase model and discretisation sensitivity, the influence of initial spray conditions is discussed. A minimum of 5 initial global spray characteristics are required to model the downstream spray characteristics adequately under isothermal, atmospheric conditions. Verification of predicted transient spray characteristics such as the hollow-cone, cone collapse, head vortex, stratification and penetration are discussed, and further improvements to modelling GDI sprays proposed.

CYLINDRICAL MIXING LAYER MODEL IN STELLAR JET (항성 제트의 원통형 혼합층 모델)

  • Choe, Seung-Eon;Yu, Gyeong-Hui
    • Publications of The Korean Astronomical Society
    • /
    • v.9 no.1
    • /
    • pp.21-38
    • /
    • 1994
  • We have developed a cylindrical mixing layer model of a stellar jet including cooling effect in order to understand an optical emission mechanism along collimated high velocity stellar jets associated with young stellar objects. The cylindrical results have been calculated to be the same as the 2D ones presented by Canto & Raga(1991) because the entrainment efficiency in our cylindrical model has been obtained to be the same value as the 2D model has given. We have discussed the morphological and physical characteristics of the mixing layers by the cooling effect. As the jet Mach number increases, the initial temperature of the mixing layer goes high because the kinetic energy of the jet partly converts to the thermal energy of the mixing layer. The initial cooling of the mixing layer is very severe, changing its outer boundary radius. A subsequent change becomes adiabatic. The number of the Mach disks in the stellar jet and the total radiative luminosity of the mixing layer, based on our cylindrical calculation, have quite agreed with the observations.

  • PDF

The Prediction of Injection Distances for the Minimization of the Pressure Drop by Empirical Static Model in a Pulse Air Jet Bag Filter (충격기류식 여과집진기에서 경험모델을 이용한 최소압력손실의 분사거리 예측)

  • Suh, Jeong-Min;Park, Jeong-Ho;Lim, Woo-Taik
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.25-34
    • /
    • 2011
  • The new empirical static model was constructed on the basis of dimension analysis to predict the pressure drop according to the operating conditions. The empirical static model consists of the initial pressure drop term (${\Delta}P_{initial}$) and the dust mass number term($N_{dust}=\frac{{\omega}_0{\nu}_f}{P_{pulse}t}$), and two parameters (dust deposit resistance and exponent of dust mass number) have been estimated from experimental data. The optimum injection distance was identified in the 64 experimental data at the fixed filtration velocity and pulse pressure. The dust deposit resistance ($K_d$), one of the empirical static model parameters got the minimum value at d=0.11m, at which the total pressure drop was minimized. The exponent of dust mass number was interpreted as the elasticity of pressure drop to the dust mass number. The elasticity of the unimodal behavior had also a maximum value at d=0.11m, at which the pressure drop increased most rapidly with the dust mass number. Additionally, the correlation coefficient for the new empirical static model was 0.914.

The Effect on Launching Stability Due to the Initial Missile Detent Force (유도탄의 초기 구속력이 발사안정에 미치는 영향)

  • 심우전;임범수;이우진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.22-29
    • /
    • 1997
  • This paper presents results on dynamic analysis of the missile initial motion arising from the missile detent force. Using ADAMS (Automatic Dynamic Analysis of Mechanical Syatem) software, a non- linear46-DOF (Degree of Freedom) model is developed for the launcher system including missile and lunch tube contact problem. From the dynamic analysis, it is found that initial angular velocity of the missile incre- ases when the missile detent force increases and also when rocket exhaust plume is taken into account. To achieve the missile launching stability, it needs to reduce the missile initial detent force and exhaust plume area of the lancher. Results of the dynamic analysis on the system natural frequency agree well with those obtained from experimental modal tests. The overall results suggest that the proposed method is a useful tool for prediction of initial missile stability as well as design of the missile launcher system.

  • PDF

3-D P-wave Velocity Structure in South Korea using Seismic Tomography (지진 토모그래피 방법을 이용한 남한에서의 3차원 P파 속도구조)

  • 박재우;민경덕;전정수;제일영
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.445-454
    • /
    • 2002
  • 3-D P-wave velocity model in the southern Korean Peninsula is investigated by using the earthquake tomography method. This velocity model would be used to locate the exact hypocenter position, and also useful for our understanding of the crustal structure. The simultaneous inversion is used to get the minimum 1-D model and hypo-center relocation, which are used as an initial 3-D velocity model. The velocities in the minimum 1-D model are 6.04 km/s, 6.45 km/s, and 7.78 km/s between the depth of 0-19 km, 19-32 km, and 32-55 km respectively. In the 3-D P-wave velocity model, Layer 1 (0~3 km) has high velocities in Kyongsang basin, Yonglam massif, and Okchon folded belt, and low velocities in Kyonggi massif. In layer 2 (3~19 km) high velocities are predominent around Kyonsang basin and Yongnam massif except Yonil basin, but low velocities exist around Kyonggi massif and Okchon folded belt. In Laye. 3 (19~32 km) high velocities prevail throughout the southern part of Korean Peninsula, but low velocity does throughout the middle except SNU, YIN station in Konggi massif. In Layer 4 (32 km), the maximum velocity is showed in the middle and southwestern part, while the minimum velocity in the southeastern and coastal area. The depth of the velocity boundary corresponds to the crustal structure of the southern Korean Peninsula which is calculated by gravity data.

Pyrolysis Reaction for the Treatment of Hazardous Halogenated Hydrocarbon Waste (유해 할로겐화 탄화수소 폐기물 처리를 위한 열분해 반응)

  • 조완근
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.399-407
    • /
    • 1997
  • The pyrolysis reactions of atomic hydrogen with chloroform were studied In a 4 cm 1.6. tubular flow reactor with low flow velocity 1518 cm/sec and a 2.6 cm 1.4. tubular flow reactor with high flow velocity (1227 cm/sec). The hydrogen atom concentration was measured by chemiluminescence titration with nitrogen dioxide, and the chloroform concentrations were determined using a gas chromatography. The chloroform conversion efficiency depended on both the chloroform flow rate and linear flow velocity, but 416 not depend on the flow rate of hydrogen atom. A computer model was employed to estimate a rate constant for the initial reaction of atomic hydrogen with chloroform. The model consisted of a scheme for chloroform-hydrogen atom reaction, Runge-Kutta 4th-order method for Integration of first-order differential equations describing the time dependence of the concentrations of various chemical species, and Rosenbrock method for optimization to match model and experimental results. The scheme for chloroform-hydrogen atom reaction Included 22 elementary reactions. The rate constant estimated using the data obtained from the 2.6 cm 1.4. reactor was to be 8.1 $\times$ $10^{-14}$ $cm^3$/molecule-sec and 3.8 $\times$ $10^{-15}$ cms/molecule-sec, and the deviations of computer model from experimental results were 9% and 12% , for the each reaction time of 0.028 sec and 0.072 sec, respectively.

  • PDF