• Title/Summary/Keyword: initial reaction rate

Search Result 509, Processing Time 0.028 seconds

Intramolecular Esterification by Lipase Powder in Microaqueous Cycohexane (미소 수용 Cyclohexange 중에서 분말 Lipase에 의한 분자내 에스테르화반응)

  • 이민규;감삼규
    • Journal of Life Science
    • /
    • v.5 no.4
    • /
    • pp.155-161
    • /
    • 1995
  • The effects of substrate concentration, enzyme concentration, reaction temperature, and water content were investigated in intramolecular esterification. This study used cyclohexane as organic solvent, power lipase as enzyme, and benzyl alcohol and octanoic acid as substrate. The initial reaction rate was found to be proportional to enzyme concentration; followed Michaelis-Menten equation for octanoic acid; and was inhibited by benzyl alcohol . The observed initial reaction rate first increased, then decreased with increasing reaction temperature, giving rise to the maximum rate at 20$\circ$. The drop in the reaction rate at higher temperature was to partition equilibrium change of substrate between organic solvent and hydration layer of enzyme molecule in addition to the deactivation by enzyme denaturation. Water layer surrounding enzyme molecule seemed to activate in organic solvent and the realistic reaction was done in the water layer. In the enzymatic reaction in organic solvent, the initial reaction rate was influenced by partition quilibrium of substrate, so the optimum condition of substrate concentration, enzyme concentration, reaction temperature, and water content would give a good design tool.

  • PDF

The Effects of Environmental Conditions on the Reduction Rate of TNT by $Fe^0$ (환경요인이 $Fe^0$ 에 의한 TNT의 환원 반응속도에 미치는 영향)

  • 배범한
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.52-55
    • /
    • 2000
  • The effects of environmental conditions, initial dissolved oxygen concentrations, pH, and the presence of electron carrier vitamin B$_{12}$ , on the reduction rate of TNT by Fe$^{0}$ was Quantitatively analyzed using a batch reactor. In all experiments, TNT reduction was best described with a first order reaction and the reduction rate decreased with the increase in the initial DO concentration. However, the specific reaction rate did not decrease linearly with the increase in the initial DO concentration. In the presence of HEPES buffer 0.2 and 2.0 mM(pH 5.7$\pm$0.2), the specific reaction rate increased more than 5.8 times, which showed reduction rate is rather significantly influenced by the pH of the solution. To test the possibility of reaction rate enhancement, well-known electron carrier(or mediator), vitamin B$_{12}$ has augmented besides Fe$^{0}$ . In the presence of 8.0 $\mu\textrm{g}$/L of vitamin B$_{12}$ , the specific reaction rate increased as much as 14.6 times. The results indicate that the addition of trace amount of vitamin B$_{12}$ can be a promising rate controlling option for the removal of organics using a Fe$^{0}$ filled permeable reactive barrier.

  • PDF

Esterification of High Concentration Free Fatty Acid in Rice Bran Oil (미강유 중 고농도 자유지방산의 에스테르화)

  • Shin, Yong-Seop
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.211-224
    • /
    • 2008
  • Characteristics of the esterification reaction between free fatty acid in rice bran oil and methanol was investigated in the presence of catalysts, such as PTS(p-toluene sulfonic acid), Amberlyst 15 dry and SCX(silica gel based strong cation exchange resin). While reaction temperature was kept constant at $65^{\circ}C$, initial feed content of free fatty acid was varied from 100% to 1% by addition of pure free fatty acid which was previously made from rice bran oil. Also, the effect of mole ratio of methanol to fatty acid on the final conversion was examined. When esterification of pure free fatty acid was catalyzed by several acids, final conversions were increased in order of Amberlyst 15 dry, SCX and PTS. Using PTS catalyst, initially the reaction proceeded in homogeneous 2nd oder reaction mechanism. However, phase of reaction mixture changed from homogeneous to heterogeneous along the reaction time and then reaction rate was retarded by mass transfer resistance of methanol. Final conversion of free fatty acid in reaction mixture was depended on initial feed content of free fatty acid, and had maximum value at 30% of initial feed free fatty acid content for all kinds of catalysts used. And the final conversion was increased with mole ratio of methanol by the improvement of reaction rate. When initial feed free fatty acid content below 10% and the reaction was catalyzed by PTS, concentration of free fatty acid in reaction mixture was increased in the middle of reaction time by hydrolysis of triglyceride in reaction mixture. Also, if silica gel was added into the reaction mixture which had initial feed free fatty acid content below 50%, final conversion was increased by the adsorption of moisture produced. The SCX catalyst made the esterification reaction of free fatty acid to progress like in case of PTS catalyst. However, when initial feed free fatty acid content below 10%, concentration of free fatty acid in. reaction mixture was decreased monotonically and not increased in the middle of reaction time on the contrary to the case of PTS. Thus, SCX catalyst accomplished more high value of final conversion than PTS catalyst for the initial feed fatty acid content range from 50% to 5% In case of initial feed free fatty acid content of 1% and mole ratio of methanol was 2, concentration of free fatty acid in reaction mixture increased over the initial feed free fatty acid content for all kind of catalysts used. Although SCX catalyst was added into reaction mixture which had 1% of initial feed fatty acid content, final conversion was hardly raised by mole ratio of methanol.

Effect of Cement Particle Size on Properties of Ordinary Portland Cement (보통 포틀랜드 시멘트 물성에 미치는 시멘트 입도의 영향)

  • Byun, Seung-Ho;Kim, Hyeong-Cheol;Kim, Jae-Young;Choi, Hyun-Kuk;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • This study examined the effects of particle size on characteristics of cement by controlling the particle size of commercial cement. Through a size adjustment, the cement has increasing more of particles that are less than $10{\mu}m$ in size so the initial reaction time has been shortened as a result of improvement in the early hydration reaction. Additionally, it showed a great characteristics of strength from the early age and the initial hydration heat has been increased as well. In the upper and middle parts cements, the initial hydration reaction rate contribution is high with the $10{\mu}m$ compared to original cement. So the initial hydration reaction rate is improved and as a result, it also showed relatively high hydration heat as well. Additionally, adiabatic temperature also showed an increase rate in the results.

Innovative Approaches to Increase the Longevity of PRBs Containing Zero-Valent Iron

  • 이태윤;박재우;최은경;허보연
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.122-124
    • /
    • 2002
  • The removal capacity of zero-valent iron for Cr(Ⅵ) was evaluated using batch kinetic tests. The rate constants for zero-valent iron dramatically increased as initial Cr(Ⅵ) concentration decreased. Generally, the reaction rates of Cr(Ⅵ) with zero-valent iron were faster than that of a biotic degradation of Cr(Ⅵ), and furthermore the reaction rates were inversely proportional to the initial Cr(Ⅵ) concentrations. After certain reaction time elapsed. no further decrease of Cr(Ⅵ) was observed, indicating a loss of iron reactivity. The loss of iron reactivity was primarily due to the passivation of iron surfaces with iron-Cr precipitates, but the reactivity of iron was recovered by adding iron-reducing bacteria. Even though the addition of bacteria itself removed Cr(Ⅵ), the combination of iron-reducing bactera and oxidized iron significantly enhanced the reaction rate for Cr(Ⅵ) removal. The results from column tests also confirmed that the innoculation of iron-reducing bacteria to the column containing completely oxidized iron partially enhanced the recovery of the iron reactivity.

  • PDF

Photocatalytic Decolorization of Dye usingUV/TiO2 and Fluidized Bed Reactor (UV/TiO2와 유동층 반응기를 이용한 안료의 광촉매 탈색)

  • Park Young-Seek
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.921-928
    • /
    • 2004
  • The photocatalytic decolorization of Rhodamine B (RhB) was studied using immobilized $TiO_2$ and fluidized bed reactor. Immobilized $TiO_2$(length: 1$\~$2 mm, width: 1$\~$3 mm, thickness: 0.5$\~$2 mm) onto silicone sealant was employed as the photocatalyst and a 30 W germicidal lamp was used as the light source and the reactor volume was 4.8 L. The effects of parameters such as the amounts of photocatalyst, initial concentration, initial pH, superficial velocity, $H_2O_2$ and anion additives. ($NO_3^{-},\;SO_4^{2-},\;Cl^{-},\;CO_3^{2-}$) The results showed that the optimum dosage of the immobilized $TiO_2$ were 87.0 g/L. Initial removal rate of RhB of the immobilized $TiO_2$ was 1.5 times higher than that of the powder $TiO_2$ because of the adsorption onto the surface of immobilized $TiO_2$ In the conditions of acidic pH, initial reaction rate was increased slowly and reaction time was shorted. The effect of anion type on the reaction rate was not much.

Fundamental Studies for the Adsorption Features of Malachite Green on Granular Activated Carbon (활성탄에 의한 말라카이트 그린 흡착 특성에 관한 기초연구)

  • Baek, Mi-Hwa;Choi, Young-Jin;Kim, Young-Ji;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.459-463
    • /
    • 2009
  • The adsorption features of malachite green onto activated carbon have been investigated for its treatment from aqueous solution. The influential factors were examined the initial concentration of malachite green, reaction temperature, and pH. Under experimental conditions, adsorption equilibrium of malachite green was attained within 2 hr after the adsorption started. The adsorption reaction of malachite green followed the pseudo-second order rate model, and the adsorption rate constants(k2) decreased with increasing initial concentrations of malachite green. Adsorption behavior of malachite green on activated carbon was found to follow the Freundlich model well in the initial adsorbate concentration range. With increase in temperature, the adsorbed amount of malachite green at equilibrium increased, which indicate that the adsorption reaction was endothermic reaction. Thermodynamic parameters for malachite green adsorption reaction were estimated at varying temperatures, and in the pH range of 2-10, adsorption of malachite green increased.

A Characterization of Pervaporation-facilitated Esterification Reaction with non-perfect Separation (비완전 막분리시 투과증발 막촉진 에스터화 반응 거동 연구)

  • C. K Yeom;F. U. Baig
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.268-282
    • /
    • 2003
  • Pervaporation-facilitated esterification with slow reaction regime was characterized by using a practical model based on non-perfect separation through membrane. A non-perfect separation in which the membrane is not perfectly permselective to water was applied to the model. Thus, membrane selectivity and membrane capability to remove water were included in the simulation model to explain how they influence the membrane-facilitated reaction process and improve the reactor performance. It was shown by simulation that in the reaction systems with non-perfect separation, reaction completion can hardly be achievable when any reactant at initial molar ratio=1 or the less abundant reactant at initial molar ratio>1 permeates through membrane, and the permeation of ester accelerates the forward reaction md increase reaction conversion at any instant through removal of product species like water. The volume change causes concentrating both reactants and products that affect the reaction with time in opposite ways; reactant-concentrating effect is dominant during the initial stage of reaction, increasing the reaction rate, and then concentrating product influences more reaction by decreasing the reaction rate.

A Study on the Evaporation Behavior of Magnesium Alloy (AM50) Scrap Melt under Reduced Pressure (감압 하에서 마그네슘 합금(AM50) 스크랩 용탕의 증발 거동에 관한 연구)

  • Wi, Chang-Hyun;Hong, Seong-Hun;You, Byung-Don
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.241-247
    • /
    • 2010
  • In order to develop the vacuum distillation process of magnesium alloy scrap, a fundamental study on the evaporation behavior of magnesium alloy (AM50) scrap melt was carried out. Melt temperature, pressure, reaction time, and initial specific surface area of melt were considered as experimental variables. The evaporation rate of magnesium increased with the increase of melt temperature and initial specific surface area of melt, and with the decrease of the pressure. The activation energy of magnesium evaporation reaction calculated by an Arrhenius plot decreased with the decrease of the pressure and with the increase of the initial specific surface area of melt. An empirical equation was derived for the evaporation rate of magnesium from AM50 alloy melt.

The Phenol Wastewater Treatment by Candida tropicalis in Fluidized Bed Biofilm Reactor (유동층 반응기에서 Candida tropicalis 균에 의한 페놀함유 폐수처리에 관한 연구)

  • Kim, Woo Sik;Youm, Kyung Ho;Kim, Eung Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 1985
  • The effects of initial concentration, flow rate, and recycle ratio on the removal efficiency of phenol were studied in a tapered fluidized bed reactor packed with activated carbon which was attached with Candida tropicalis. The optimum conditions of Candida tropicalis were showed that pH was 7.0 and temperature was $30^{\circ}C$, and the specific growth rate of Candida tropicalis was satisfied with the Monod equation up to 500 mg/L of phenol, and beyond it the inhibition of substrate was found. According to the increases of initial concentration and flow rate, the removal efficiency was decreased, as the recycle ratio was increased, the removal efficiency was increased. In the case of flow rate of 10mL/sec and the recycle ratio of 2, the removal efficiency was 90% above for the all of initial concentration. The removal rate of phenol was the first order reaction in this system, and the rate equation of reaction was as follows.

  • PDF