• Title/Summary/Keyword: initial pressure

Search Result 1,916, Processing Time 0.033 seconds

Study on the Temporal Density Variation of Chemical Species in the Atmospheric Pressure Plasma Process (대기압 플라즈마 프로세스에 있어서 시간에 따른 화학종의 밀도변화 연구)

  • Han, Sang-Bo;Park, Sung-Su;Kim, Jong-Hyun;Park, Jae-Youn
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.45-51
    • /
    • 2013
  • This study is to discuss simulation results with 51 principal chemical reactions in non-thermal plasma space under atmospheric pressure, and the ambient gas was mainly composed of oxygen and nitrogen molecules. The initial density of O and OH radicals under the ambient temperature of 300K is largely generated in comparison with other higher temperature, and the density of O radical decreased from $20{\mu}s$ according to increase the temperature. The initial density of OH radical seemed to decrease steeply at the initial stage. By increasing the initial density of $H_2O$ molecules, O radical's effect was few and the density of OH radical was largely generated about 2 times. In addition, ozone density was increased as increasing the density of O radical, but it was decreased as increasing the density of $H_2O$. In case of the temperature more than 300K, $NO_2$ tend to be removed, but NO was increased than the initial density.

Dispersal of Molecular Clouds by UV Radiation Feedback from Massive Stars

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.38.1-38.1
    • /
    • 2017
  • We report the results of three-dimensional radiation hydrodynamic simulations of star cluster formation in turbulent molecular clouds, with primary attention to how stellar radiation feedback controls the lifetime and net star formation efficiency (SFE) of their natal clouds. We examine the combined effects of photoionization and radiation pressure for a wide range of cloud masses (10^4 - 10^6 Msun) and radii (2 - 80 pc). In all simulations, stars form in densest regions of filaments until feedback becomes strong enough to clear the remaining gas out of the system. We find that the SFE is primarily a function of the initial cloud surface density, Sigma, (SFE increasing from ~7% to ~50% as Sigma increases from ~30 Msun/pc^2 to ~10^3 Msun/pc^2), with weak dependence on the initial cloud mass. Control runs with the same initial conditions but without either radiation pressure or photoionization show that photoionization is the dominant feedback mechanism for clouds typical in normal disk galaxies, while they are equally important for more dense, compact clouds. For low-Sigma clouds, more than 80% of the initial cloud mass is lost by photoevaporation flows off the surface of dense clumps. The cloud becomes unbound within ~0.5-2.5 initial free-fall times after the first star-formation event, implying that cloud dispersal is rapid once massive star formation takes place. We briefly discuss implications and limitations of our work in relation to observations.

  • PDF

Intracranial Pressure and Cerebral Blood Flow Monitoring after Bilateral Decompressive Craniectomy in Patients with Acute Massive Brain Swelling (급성 중증 뇌종창 환자의 양측성 감압개두술 후 뇌압 및 뇌혈류 측정)

  • Yoo, Do-Sung;Kim, Dal-Soo;Huh, Pil-Woo;Cho, Kyoung-Suck;Park, Chun-Kun;Kang, Joon-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.295-306
    • /
    • 2001
  • Objectives : The management of massive brain swelling remains an unsolved problem in neurosurgical field. Despite newly developed medical and pharmacological therapy, the mortality and morbidity due to massive brain swelling remains high. According to many recent reports, surgical decompression with dura expansion is superior to medical management in patients with massive brain swelling. We performed surgical treatment on the first line of treatment, and followed medical management in case with refractory increased intracranial pressure(ICP). To show the quantitative effect of decompressive surgery on the intracranial pressure, we performed ventricular puncture and checked the ventricular ICP continuously during the decompressive surgery and postoperative period. Materials and Methods : Fifty-one patients with massive brain swelling, undergoing bilateral decompressive craniectomy with dura expansion, were studied in this study. In all patients, ventricular puncture was performed at Kocher's point on the opposite side of massive brain swelling. The ventricular pressure was monitored continuously, during the bilateral decompression procedures and postoperative period. Results : The initial ventricular ICP were varied from 13mmHg to 112mmHg. Immediately after the bilateral craniectomy, mean ventricular ICP decreased to $53.1{\pm}15.8%$ of the initial ICP(ranges from 5mmHg to 87mmHg). Dura opening decreased mean ICP by additional 36.7% and made the ventricular pressure $16.4{\pm}10.5%$ of the initial pressure (ranges from 0mmHg to 28mmHg). Postoperatively, ventricular pressure was lowered to $20.2{\pm}22.6%$(ranged from 0mmHg to 62.3mmHg) of the initial ICP. The ventricular ICP value during the first 24 hours after decompressive surgery was found to be an important prognostic factor. If ICP was over 35mmHg, the mortality was 100% instead of additional medical(barbiturate coma therapy and hypothermia) treatments. Conclusion : Bilateral decompression with dura expansion is considered an effective therapeutic modality in ICP control. To obtain favorable clinical outcome in patients with massive brain swelling, early decision making on surgical management and proper patient selection are mandatory.

  • PDF

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

  • Park, Hyun-Sik;Choi, Ki-Yong;Choi, Seok;Yi, Sung-Jae;Park, Choon-Kyung;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.53-62
    • /
    • 2009
  • A set of experiments has been conducted on the performance sensitivity of the passive residual heat removal system (PRHRS) for an advanced integral type reactor, SMART, by using a high temperature and high pressure thermal-hydraulic test facility, the VISTA facility. In this paper the effects of the opening delay of the PRHRS bypass valves and the closing delay of the secondary system isolation valves, and the initial water level and the initial pressure of the compensating tank (CT) are investigated. During the reference test a stable flow occurs in a natural circulation loop that is composed of a steam generator secondary side, a secondary system, and a PRHRS; this is ascertained by a repetition test. When the PRHRS bypass valves are operated 10 seconds later than the secondary system isolation valves, the primary system is not properly cooled. When the secondary system isolation valves are operated 10 or 30 seconds later than the PRHRS bypass valves, the primary system is effectively cooled but the inventory of the PRHRS CT is drained earlier. As the initial water level of the CT is lowered to 16% of the full water level, the water is quickly drained and then nitrogen gas is introduced into the PRHRS, resulting in the deterioration of the PRHRS performance. When the initial pressure of the PRHRS is at 0.1MPa, the natural circulation is not performed properly. When the initial pressures of the PRHRS are 2.5 or 3.5 MPa, they show better performance than did the reference test.

Prognostic Factors and Clinical Outcomes of Acute Intracerebral Hemorrhage in Patients with Chronic Kidney Disease

  • Kim, Jin Kyu;Shin, Jun Jae;Park, Sang Keun;Hwang, Yong Soon;Kim, Tae Hong;Shin, Hyung Shik
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.4
    • /
    • pp.296-301
    • /
    • 2013
  • Objective : We conducted a retrospective study examining the outcomes of intracerebral hemorrhage (ICH) in patients with chronic kidney disease (CKD) to identify parameters associated with prognosis. Methods : From January 2001 to June 2008, we treated 32 ICH patients (21 men, 11 women; mean age, 62 years) with CKD. We surveyed patients age, sex, underlying disease, neurological status using Glasgow Coma Scale (GCS), ICH volume, hematoma location, accompanying intraventricular hemorrhage, anti-platelet agents, initial and 3rd day systolic blood pressure (SBP), clinical outcome using the modified Rankin Scale (mRS) and complications. The severity of renal functions was categorized using a modified glomerular filtration rate (mGFR). Multifactorial effects were identified by regression analysis. Results : The mean GCS score on admission was $9.4{\pm}4.4$ and the mean mRS was $4.3{\pm}1.8$. The overall clinical outcomes showed a significant relationship on initial neurological status, hematoma volume, and mGFR. Also, the outcomes of patients with a severe renal dysfunction were significantly different from those with mild/moderate renal dysfunction (p<0.05). Particularly, initial hematoma volume and sBP on the 3rd day after ICH onset were related with mortality (p<0.05). However, the other factors showed no correlation with clinical outcome. Conclusion : Neurological outcome was based on initial neurological status, renal function and the volume of the hematoma. In addition, hematoma volume and uncontrolled blood pressure were significantly related to mortality. Hence, the severity of renal function, initial neurological status, hematoma volume, and uncontrolled blood pressure emerged as significant prognostic factors in ICH patients with CKD.

Numerical and experimental investigation of conventional and un-conventional preswirl duct for VLCC

  • Shin, Hyun-Joon;Lee, Jong-Seung;Lee, Kang-Hoon;Han, Myung-Ryun;Hur, Eui-Beom;Shin, Sung-Chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.414-430
    • /
    • 2013
  • This paper shows the study of preswirl duct as an effective energy saving devices that have been devised and reviewed to support the propeller performance, especially for the ship of VLCC with large block coefficients. From the bare hull wake measurements, typical upper/lower asymmetry of hull wake at the propeller disk was found. The 2 kinds of pre-swirl duct, Unconventional half circular duct and Conventional circular pre-swirl duct have been designed and reviewed to recover the loss of propeller running in that condition. The general function of the pre-swirl duct was set to work against this asymmetry of wake and generate pre-swirled flow into the propeller against the propeller rotating direction. The optimum self propulsion tests with various angle configurations were carried out and the best configuration was decided. Accordingly, cavitation test was carried out with best configuration of unconventional half circular duct. The blade surface and tip vortex cavitation behaved smoother when the duct was mounted. The hull pressure amplitudes reflected this difference, so the hull pressure amplitude with duct was smaller than that of without duct.

A Study on the Risk Assessment and Reduction of Initial Construction Cost in a Biosafety Laboratory According to Improvement of Supply and Exhaust Method (급배기 방식 개선에 따른 생물안전 밀폐시설의 Risk Assessment와 초기 건설비 저감에 대한 연구)

  • Hwang, Ji Hyun;Hong, Jin Kwan;Ju, Young Duk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.534-539
    • /
    • 2013
  • In general, entire supply air of the BSL3 laboratory should be vented to the outside for its biosafety and the air conditioning system should always be operating to maintain a room pressure difference. In this regard, annual energy consumption is approximately five or ten times greater than the magnitude of the office building. In addition, to adjust room pressure difference to the set value efficiently, the supply and exhaust duct system are installed in each room of the BSL3 lab. Thus, initial construction cost is extremely high. In this study, multizone simulation is performed to estimate maintaining the appropriate room pressure difference in the case of changing model A (each room supply and exhaust system) to model B (each zone supply and exhaust system) for verification of the BSL3 lab biosafety. Also, in the case of these two models, the multizone simulation for three kinds of biohazard scenario is performed as part of risk assessment. The analysis of initial construction cost of two models is conducted for comparison. According to the studies, initial construction cost of model B is less than about 22% of existing model A. Moreover, biosafety of the BSL3 lab is still maintaining in the case of the two models.

A Study on Physicochemical Characteristics of Hydrogen Gas Explosion (수소가스 폭발의 물리화학적 특성 연구)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing significantly greenhouse gas emissions, but the explosion safety issues associated with hydrogen applications need to be investigated and fully understood to be applicable as the carrier. The risk associated with a explosion depends on an understanding of the impacts of the explosion, particularly the pressure-time history during the explosion. This work provides the effects of explosion parameters, such as specific heat ratio of burned and unburned gas, equilibrium maximum explosion pressure, and burning velocity, on the pressure-time history with flame growth model. The pressure-time history is dominantly depending on the burning velocity and equilibrium maximum explosion pressure of hydrogen-air mixture. The pressure rise rate increase with the burning velocity and equilibrium maximum explosion pressure. The specific heat ratio of unburned gas has more effect on the final explosion pressure increase rate than initial explosion pressure increase rate. However, the specific heat ratio of burned gas has more influence on initial explosion pressure increase rate. The flame speeds are obtained by fitting the experimental data sets. The flame speeds for hydrogen in air based on our experimental data is very low, making a transition from deflagration to detonation in a confined space unlikely under these conditions.

Micellar Enhanced Ultrafiltration (MEUF) and Activated Carbon Fiber (ACF) Hybrid Processes for the Removal of Cadmium from an Aqueous Solution

  • Rafique, Rahman Faizur;Lee, Seunghwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.775-780
    • /
    • 2014
  • Micellar enhanced ultrafiltration (MEUF) was used to remove cadmium from an aqueous solution using sodium dodecyl sulfate (SDS) as a surfactant. Operational parameters such as initial permeate flux, retentate pressure, initial cadmium concentration, pH solution, molecular weight cut-off (MWCO), and molar ratio of cadmium to SDS were investigated. Removal efficiency of cadmium from an aqueous solution increased with an increase of retentate pressure, pH solution and molar ratio of cadmium to SDS, and decreased with an increase of initial permeate flux. Higher removal efficiency of cadmium from the aqueous solution was achieved using lower MWCO (smaller membrane pore size). Under optimized experimental condition, cadmium removal efficiency reached 74.6 % within an hour. Using MEUF-ACF hybrid process the removal efficiency of both cadmium and SDS was found to be over 90%.

A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector (스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구)

  • 이충훈;정수진;김우승;이기형;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF