• Title/Summary/Keyword: initial pressure

Search Result 1,916, Processing Time 0.029 seconds

A Study on the Fine Sturcture of Nylon 6 Films by Crysallization under Pressure (Nylon 6 Film의 압력결정화에 의한 미세구조 변화)

  • Park, Myung Soo;Lee, Chul Soo;Gu, Ja Gil
    • Textile Coloration and Finishing
    • /
    • v.8 no.6
    • /
    • pp.1-8
    • /
    • 1996
  • The crystal structures of Nylon 6 films with the changes of pressure, temperature, and the processing time were examined. The accompanying physical property changes such as the weight fraction, the crystallinity, the crystal size, the initial modulus, and the thermal properties, gives the following results. When the sample is processed at 16$0^{\circ}C$, the weight fraction is not changed significantly with varying pressure. However, at 18$0^{\circ}C$ a significant change of the weight fraction was found with increasing pressure above 5 ton/in$^{2}$ so as to increase the crysallinity. As long as the ct transition is concerned we found that it begins from 14$0^{\circ}C$ and is completed at 18$0^{\circ}C$ and 9 ton/$in^{2}$ of pressure with the processing time of 120 min. The increase of the initial modulus is believed to be due to the increase of the number of the tie chains and the tension resulting from the change of the crystal size in the direction perpendicular to the direction of the applied pressure. The meltiong point change is due to the pressurized crystallization was not observed.

  • PDF

The Analysis of Fracture Propagation in Hydraulic Fracturing using Artificial Slot Model (인공슬롯을 고려한 수압파쇄 균열의 발전양상에 관한 연구)

  • 최성웅;이희근
    • Tunnel and Underground Space
    • /
    • v.5 no.3
    • /
    • pp.251-265
    • /
    • 1995
  • One of the most important matters in stress measurement by hydraulic fracturing technique is the determination of the breakdown pressure, reopening pressure, and shut-in pressure, since these values are the basic input data for the calculation of the in-situ stress. The control of the fracture propagation is also important when the hydraulic fracturing technique is applied to the development of groundwater system, geothermal energy, oil, and natural gas. In this study, a laboratory scale hydraulic fracturing device was built and a series of model tests were conducted with cube blocks of Machon gabbro. A new method called 'flatjack method' was adopted to determine shut-in pressure. The initial stress calculated from the shut-in pressure measured by flatjack method showed much higher accuracy than the stress determined by the conventional method. The dependency of the direction of fracture propagation on the state of the initial stresses was measured by introducin g artificial slots in the borehole made by water jet system. Numerical modeling by BEM was also performed to simulate the fracture propagation process. Both results form numerical and laboratory tests showed good agreement. From this study which provides the extensive results on the determination of shut-in pressure and the control of fracture propagation which are the critical issue in the recent hydraulic fracturing, it is conclued that in-situ stress measurement and the control of fracture propagation could be achived more accurately.

  • PDF

Prediction of the Blast Wave Propagation Over a Kick Motor Test Facility (Kick Motor 시험장 충격파 전파 예측)

  • Ok, Ho-Nam;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.220-223
    • /
    • 2008
  • A test facility to measure the performance of a KM(Kick Motor) is constructed, and prediction of blast wave propagation over the facility is performed to check if the safety of test personnel in MCC(Main Control Center) can be guaranteed even for the most severe explosion. Assuming that the initial explosion energy is contained in a sphere under the pressure of 500, 1000, 1500 psi, respectively, the radius of the sphere is determined for each pressure to set the mass of contained explosion gas to 35 kg. The material properties of explosion gas are set to be the ones of KM propellant combustion gas under normal condition. To reduce the effort and time required for a complex three-dimensional modeling, the flowfield is approximated to axismmetry. Calculations are performed for all three initial pressure conditions, and the analysis of the result is given for 1500 psi which is expected to be the worst case. The maximum pressure is 3.5 psig while the minimum pressure is -1.2 psig on the outer wall of MCC, and the maximum pressure difference between the inner and outer walls of protection wall amounts to 3.0 psi.

  • PDF

The Comparison of Characteristics of Foot pressure between Treadmill and Ground walking in Normal person (정상인의 평지보행과 트레드밀 보행 시 족저압의 특성 비교)

  • Kim, Ji-Hye;Oh, Tae-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • Purpose : The purpose of this study is to compare the distribution of foot pressure, knee and ankle joint angle between treadmill walking and ground walking in normal person. Methods : 18 Person of subject has participated this study, let subject to walk in ground and treadmill in order to gain data of foot distribution and knee, ankle joint angle using by parotec system. and Dartfish system. Walking velocity was constrained by 2Km/h and more 10sec. Date analysis was used by paired-t test using SPSS/PC statistical programs for window. Results : Result show that total contact times has shown symmetry between both legs, and more increase of left foot pressure in treadmill walking. Foot pressure of treadmill walking was significantly decreased in right hind foot and fore foot and hallux area. The ankle joint angle of treadmill walking was significantly decreased in initial contact phase. Conclusion : Results of this study show that foot pressure of treadmill walking was more decreased than ground walking in right hind foot and fore foot, hallux area. And the ankle joint angle of treadmill walking was significantly decreased in initial contact phase.

Structural Optimization and Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선)

  • Kim, Young-Sang;Joo, No-Ah;Park, Hyun-Il;Park, Sol-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.115-125
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by insitu test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network (NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. It was already found that NN model can come over the site dependency and prediction accuracy is greatly improved when compared with present theoretical and empirical models. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network (CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. Prediction results of CNN model are compared with those of conventional empirical and theoretical models and multi-layered neural network model, which has the optimized structure. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

Forecast Sensitivity Analysis of An Asian Dust Event occurred on 6-8 May 2007 in Korea (2007년 5월 6-8일 황사 현상의 예측 민감도 분석)

  • Kim, Hyun Mee;Kay, Jun Kyung
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.399-414
    • /
    • 2010
  • Sand and dust storm in East Asia, so called Asian dust, is a seasonal meteorological phenomenon. Mostly in spring, dust particles blown into atmosphere in the arid area over northern China desert and Manchuria are transported to East Asia by prevailing flows. An Asian dust event occurred on 6-8 May 2007 is chosen to investigate how sensitive the Asian dust transport forecast to the initial condition uncertainties and to interpret the characteristics of sensitivity structures from the viewpoint of dynamics and predictability. To investigate the forecast sensitivities to the initial condition, adjoint sensitivities that calculate gradient of the forecast aspect (i.e., response function) with respect to the initial condition are used. The forecast aspects relevant to Asian dust transports are dry energy forecast error and lower tropospheric pressure forecast error. The results show that the sensitive regions for the dry energy forecast error and the lower tropospheric pressure forecast error are initially located in the vicinity of the trough and then propagate eastward as the surface low system moves eastward. The vertical structures of the adjoint sensitivities for the dry energy forecast error are upshear tilted structures, which are typical adjoint sensitivity structures for extratropical cyclones. Energy distribution of singular vectors also show very similar structures with the adjoint sensitivities for the dry energy forecast error. The adjoint sensitivities of the lower tropospheric pressure forecast error with respect to the relative vorticity show that the accurate forecast of the trough (or relative vorticity) location and intensity is essential to have better forecasts of the Asian dust event. Forecast error for the atmospheric circulation during the dust event is reduced 62.8% by extracting properly weighted adjoint sensitivity perturbations from the initial state. Linearity assumption holds generally well for this case. Dynamics of the Asian dust transport is closely associated with predictability of it, and the improvement in the overall forecast by the adjoint sensitivity perturbations implies that adjoint sensitivities would be beneficial in improving the forecast of Asian dust events.

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • Raihanuzzaman, Rumman Md.;Song, Jun-U;Tak, Byeong-Jin;Hong, Hyeon-Seon;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

Effects of Emphasized Initial Contact Auditory Feedback Gait Training on Balance and Gait in Stroke Patients (뇌졸중 환자의 초기 접지기를 강조한 청각적-피드백 보행훈련이 균형능력과 보행기능에 미치는 영향)

  • Kim, Jung-Doo;Cha, Yong-Jun;Youn, Hye-Jin
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.4
    • /
    • pp.49-57
    • /
    • 2015
  • PURPOSE: This study aimed to investigate the effect of emphasized initial contact gait training on balance and gait ability in hemiplegia patients. METHODS: Twenty-four hemiplegic patients were randomly allocated to an experimental group or control group. All participants received 30-min neurodevelopmental treatment. Furthermore, the experimental group received initial contact-emphasized auditory feedback gait training, whereas the control group received gait training without auditory feedback. The intervention was performed 3 times per week, 20 min per each time, for a total of 6 weeks. Balance was assessed using the center of pressure path length, center of pressure velocity, and limitation of stability path length, whereas gait ability was assessed using the 10-m walking test and functional gait assessment. RESULTS: In both groups, center of pressure path length and center of pressure velocity significantly decreased after training. Compared to the control group, the experimental group showed a 10% significant improvement (p<.05). In the limitation of stability path length of both sides, the experimental group showed a significant increase compared to that before intervention. Compared to the control group, the experimental group showed a 7% significant improvement in results of the 10-m walking test and functional gait assessment (p<.05). CONCLUSION: Emphasized Initial contact gait training is considered an effective treatment for improving gait ability and balance ability in stroke patients.

A Study on Parameters of Soft Recoil Mechanism for Reduction of Recoil Force (주퇴력 저감을 위한 연식 주퇴 메커니즘의 매개변수에 관한 연구)

  • Yang, Tae-Ho;Lee, Young-Shin;Lee, Kyu-Sub;Jun, Sang-Bae;Kang, Kuk-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.823-828
    • /
    • 2012
  • The soft recoil mechanism was an effective mechanism for reducing the recoil force by forwarding momentum. There were some parameters such as the fire angle, firing position, and initial pressure of the recuperator, which influenced the forwarding momentum. These parameters affected the generation of the forwarding momentum in the soft recoil mechanism. To design for the mechanism, the parameters affecting momentum were studied to consider some reasonable conditions. Among the various parameters, the initial pressure of the recuperator and firing position was confirmed as a key factor to have affected the momentum. It was determined that the recoil force had a minimum value when the initial pressure of the recuperator was 180.

Optimization Design of a Waterproof Seal Cross-Section of Automotive Electrical Connectors (자동차 전장 커넥터 방수시일 단면의 최적설계)

  • Kang, KyuTae;Lee, ChaeEun;Kim, HoKyung
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.224-231
    • /
    • 2021
  • Recently, the waterproofing performance of high-voltage connectors in automotive vehicles has attracted increased interest. In this study, an optimal cross-sectional shape was derived to obtain uniform contact pressure and strain by considering stress relaxation problems caused by initial tension when mounting a seal. A high strain of 52.1 was distributed in the round region, owing to excessive initial tension. The finite element method (FEM) analysis indicated that the strain corresponding to the optimal initial tensile was 11. We adopted six design factors to optimize the seal cross-section and three factors as the main design factors. An orthogonal arrangement table was prepared using Minitab. FEM analyses of 16 study models were conducted to determine the optimized model. The contact pressure of the optimization model is the most evenly distributed while satisfying the waterproof performance of 0.47 MPa. Compared to the initial model, the difference in strain decreases from 35.5% to 19.6%. Finally, the derived cross-sectional shape can reduce the strain of the round region by 33.8% and the differences in the contact pressure at the upper and lower surfaces by 42% and 76%, respectively.