• Title/Summary/Keyword: initial errors of nutation

Search Result 3, Processing Time 0.02 seconds

Roll/yaw controller design using double gimbaled momentum wheel (더블김벌 모멘텀휠을 이용한 롤/요 제어기 설계)

  • 박영웅;방효충
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1099-1102
    • /
    • 1996
  • In this paper, roll/yaw attitude control of spacecraft using a double gimbaled wheel is discussed with two feedback controllers designed. One is a PD controller with no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed as a first order system and a lag parameter is designed for the yaw angle control. There are two case simulations for each controller ; constant disturbance torques and initial errors of nutation at motion. We obtain the results through simulations that steady-state error and rising time of yaw angle are determined by the compensator. Simulation parameters used in this study are the values of KOREASAT F1.

  • PDF

KOREASAT On-Orbit Normal Mode Attitude Control System (무궁화위성의 정상운용모드에서의 자세제어 시스팀)

  • 김동환;원종남;김성중;강성수;김한돌;이명수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.505-514
    • /
    • 1994
  • Koreasat spacecraft requires accurate and reliable attitude control to provide beam pointing for tenyear long communication and direction broadcasting services. This paper describes the detailed design and performance of an on-orbit normal mode attitude control subsystem for the spacecraft. Koreasat used a momentum wheel which has nominal momentum 475in-1b sec(547.6cm-kg sec) aligned with the pitch axis to control pitch attitude and provide gyroscopic stiffness in roll/yaw plane and used a 300 atm magnetic torquer to control the roll and yaw attitudes. An Earth Sensor Assembly (ESA) is used to provide pitch and roll information for the on-board micropocessor. The roll/yaw control used bang-off-bang control and while pitch axis control used proportional and integral control law. Control system errors during the operational normal mode are 0.03 deg, 0.1 deg and 0.01 deg in roll, yaw and pitch axes, respectively. Current attitude control system provides adequate control performances to capture initial attitude errors and spacecraft nutation.

  • PDF

Attitude Controller Design for a Bias Momentum Satellite with Double Gimbal (더블김벌을 장착한 바이어스 모멘텀 위성의 자세제어기 설계)

  • Park, Young-Woong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.34-42
    • /
    • 2004
  • In this paper, a double gimbal is used for roll/yaw attitude control of spacecraft and two feedback controllers are designed. One is a PD controller of no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed a first order system and a lag parameter is designed for the control of yaw angle. There are two case simulations for each of controllers; constant disturbance torques and initial errors of nutation. We obtain the results through simulations that a steady-state error and a rising time of yaw angle are developed by the compensator. In this paper, simulation parameters use the values of KOREASAT 1.