• Title/Summary/Keyword: initial damage level

Search Result 96, Processing Time 0.027 seconds

A Case of Childhood Obstructive Sleep Apnea Syndrome with Co-morbid Attention Deficit Hyperactivity Disorder Treated with Continuous Positive Airway Pressure Treatment (지속적(持續的) 상기도(上氣道) 양압술(陽壓術)을 시행(施行)하여 치료효과(治療效果)를 본 주의력(注意力) 결핍(缺乏).과잉(過剩) 운동장애(運動障碍)를 동반(同伴)한 소아기(小兒基) 폐쇄성(閉鎖性) 수면무호흡증(睡眠無呼吸症) 1례(例))

  • Sohn, Chang-Ho;Shin, Min-Sup;Hong, Kang-E;Jeong, Do-Un
    • Sleep Medicine and Psychophysiology
    • /
    • v.3 no.1
    • /
    • pp.85-95
    • /
    • 1996
  • Obstructive sleep apnea syndrome(OSAS) in childhood is unique and different n-om that in adulthood in several aspects, including pathophysiology, clinical features, diagnostic criteria, complications, management, and prognosis. Characteristic features of childhood OSAS in comparison with the adult form are the variety of severe complications such as developmental delay, more prominent behavioral and cognitive impairments, vivid cardiovascular symptoms, and increased death risk, warranting a special attention to the possible diagnosis of OSAS in children who snore. However, the childhood OSAS is often neglected and unrecognized. We, therefore, report a case of very severe OSAS in a 5-year-old boy who was sucessfully treated with continuous positive airway pressure(CPAP) treatment. Interestingly, the patient was comor-bid with the attention deficit hyperactivity disorder. Prior to the initial visit to us, adenotonsillectomy had been done at the age of 4 with no significant improvement of apneic symptoms and heavy snoring. On the initial diagnostic procedures, marked degree of snoring was audible even in the daytime wake state and the patient was observed to be very hyperactive. Increased pulmonary vascularity with borderline cardiomegaly was noted on chest X-ray. The baseline polysomnography revealed that the patient was very sleep-apneic and snored very heavily, with the respiratory disturbance index(RDI) of 46.9 per hour of sleep, the mean SaO2 of 78.8%, and the lowest SaO2 of 40.0%(the lowest detectable oxygen level by the applied oxymeter). The second night polysomnography was done for CPAP titration and the optimal pressure turned out to be $8.0\;cmH_2O$. The applied CPAP treatment was well tolerated by the patient and was found to be very effective in alleviating heavy snoring and severe repetitive sleep apneas. After 18 months of the CPAP treatment, the patient was followed up with nocturnal polysomnography(baseline and CPAP nights) and clinical examination. Sleep apneas were still present without CPAP on the baseline night. However, the severity of OSAS was significantly decreased(RDI of 15.7, mean SaO2 of 96.2%, and the lowest SaO2 of 83.0%), compared to the initial polysomnographic findings before initiation of long-term CPAP treatment. Wechsler intelligence tests done before and after the CPAP treatment were compared with each other and surprising improvement of intelligence(total 9 points, performance 16 points) was noted. Clinically he was found to be markedly improved in his attention deficit hyperactive behavior after CPAP treatment, but with minimal change of TOVA(test of variables of attention) scores except conversion of reaction time score into normal range. On the chest X-ray taken after 18 months of CPAP application, the initial cardiopulmonary abnormalities were not found at all. We found that the CPAP treatment in a young child is very effective, safe, and well-tolerated and also improves the co-morbid attention deficit hyperactive symptoms. Overall, the growth and development of the child has been facilitated with the long-term use of CPAP. Cardiovascular complications induced by OSAS have been also normalized with CPAP treatment. We suggest that early diagnosis and active treatment intervention of OSAS in children are crucial in preventing and ameliorating possible serious complications caused by repetitive sleep apneas and consequent hypoxic damage during sleep.

  • PDF

Impact of Turbidity on Protected Plants along River Levees (탁수가 하천 제방보호 식물에 미치는 영향 분석)

  • Kim, Jong-Tae;Kim, Eun-Jin;Kang, Joon-Gu;Yeo, Hong-Koo
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.161-170
    • /
    • 2013
  • We analyzed the effect of changing water level and turbidity on plants that serve to maintain slope stability on levees. In this experiment, soil collected from upstream of Imha Dam was placed in a water tank and planted with river plants of the Salix species: Salix gracilistyla, S. koreensis, and S. glanduosa. Plant regrowth was analyzed stage-by-stage during a recovery period. In addition, we assessed the tolerance of the plants to concentrated torrential rainfall and examined their recovery rates. The results indicate that in the case of these three Salix species, which are the most prevalent river plants in Korea, stem growth is arrested following serious damage and high turbidity. The possibility of regrowth was very low during the 20-day non-submerged recovery period. Although the number of leaves initially decreased during this period, subsequent regrowth was reasonably high: recovery in S. gracilistyla, S. koreensis, and S. glanduosa was up to 59.3%, 251.3%, and 148.4% respectively, compared with the initial condition.

The Comparative Quantitative Risk Assessment of LNG Tank Designs for the Safety Improvement of Above Ground Membrane Tank (지상식 멤브레인 LNG저장탱크 안전성 향상을 위한 설계형식별 정량적 위험성 비교 평가)

  • Lee S.R.;Kwon B.G.;Lee S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.57-61
    • /
    • 2005
  • The objective of paper is to carry out a comparative Quantitative Risk Assessment (QRA) of two KOGAS tank designs using a fault tree methodology, a standard 'Full Containment' tank and a 'Membrane' tank. For the membrane tank, both the initial KOGAS design and 4 modified KOGAS designs have been assessed, giving six separate cases. In this paper, the frequencies of releases are quantified using a fault tree approach. For clarity in the analysis, and to ensure consistency, all cases have been quantified using the same fault tree. Logic within the fault tree is used to select each of the cases. Full quantification of risks is often difficult, owing to a lack of relevant failure data, but the aim of this study has been to be as quantitative as possible, with full transparency of failure information. The most significant general cause of external LNG leaks is predicted to be a seismic event, which has been quantified nominally. 4modified KOGAS desiens to Prevent damage of bottom membrane panels that was shown in preparatory estimation could quantitively confirm safety improvement. According to result, the predicted frequencies of an external LNG leak for the full containment and modified membrane tanks are very similar, failures due to dropped pumps are predicted to be significantly greater for the membrane tank with thickened plate than for the full containment tank.

  • PDF

A Study on the Introduction of the ETV for Disaster Prevention - Focusing on the Role of the Korea Coast Guard for the Prevention of Radioactive Waste Accidents and Marine Accidents - (재난 예방을 위한 ETV 도입에 관한 연구 - 방사성폐기물 사고 및 해양사고 예방을 위한 해양경찰의 역할을 중심으로 -)

  • Jin, Ho-hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.694-700
    • /
    • 2018
  • Korea has disposed of medium and low level radioactive waste generated by operating nuclear power plants permanently through the radioactive waste repository located in Gyeongju. However, the maritime transport of radioactive waste is exposed to the risk of marine accidents, and it will be necessary to introduce a system to secure safety from the viewpoint of the function and role of the Korea Coast Guard. Especially, Korea is affected by large-scale marine accidents, such as the Hebei Spirit or Sewol accidents. From this point of view, we analyzed the current status of Korea radioactive waste shipping and examined the response systems of major foreign countries. As a result of examining major cases of accidents, we have operated an Emergency Towing Vessel (ETV) fleet centering on European countries in order to respond urgently to marine casualties that may have social, regional and international effects, such as accidents of similar nuclear material carriers and dangerous cargo ships. It proves a partial effect. Based on this, we propose the introduction of the Korean ETV System. In other words, it is necessary to respond to large-scale marine accidents that could lead to enormous environmental, property, and personal damage, such as marine accidents involving nuclear material ships, large oil tankers, and large passenger ships. For this, it seems necessary to introduce Korea ETV, which can carry out emergency towing, oil pollution control function, large - scale rescue equipment and manpower. This will lead to the enhancement of the Korea Coast Guard response to marine accidents, and will not miss the golden time of the initial response to the national disaster, which will help protect precious people, property and the environment.

Structural Behavior of RC Roof Slab under Cyclic Temperature Load (반복 일사하중에 대한 철근콘크리트 지붕슬래브의 구조적 거동)

  • Seo, Soo-Yeon;Yoon, Seung-Joe;Cho, Yong-Man;Choi, Gi-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • A variation of temperature acting on a RC roof slab causes a change of stress in concrete since it expands during summer and is compressed during winter. This behavior repeats annually and makes an affection to the structural capacity of member for both serviceability and ultimate level. In this paper, a cyclic temperature loading variation is calculated by analyzing the weather data of Korea for 20 years. In addition, an experimental work is planned to find the long term effect of temperature variation. Six RC slab are made with same dimension. Test parameters are loading duration (10, 20, 30 year) and whether it has pre-damage or not. Observation of stiffness variations according to cyclic loading period shows that the serious stiffness drop happens after 10 year's cyclic loading at summer while after 30 year's loading at winter. From the fracture test about slabs damaged by long term cyclic loading, however, the capacity of member such as initial stiffness and maximum strength were not changed except yield strength according to the period of long term cyclic loading. The yield strength tends to decrease after 20 year's cyclic loading.

An Analysis of Long-Term River Bed Changes using Surface-water Modeling System (SMS) Model: A case study of the Pochon stream basin (SMS 모형을 이용한 포천천 유역에서의 장기하상변동 분석)

  • Choi, Min-Ha;Lee, Seung-Oh;Ahn, Jae-Hyun;Yoon, Yong-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.139-147
    • /
    • 2008
  • More precise estimation of the bed change, primary cause of flood damage, has been recognized significant for designs of levees and other river facilities. In this study, the long-term bed change was examined as the application of the relatively new Surface-water Modeling System (SMS) Model because there has not been broad verification of the model empirically on river of South Korea. This 2-dimensional model was used to examine the bed change of Pochon Stream Basin, a tributary of Imjin River, where heavy rain damages annually occur. First, in order to verify the model, the simulating period was set from 1986 to 1998 because of the existence of the field measurements. Cross sectional field measurements of 1986 were used for the initial condition and output were compared and analyzed with the observed cross sectional data in 1998. As the results of the verification, the comparison in lateral and streamwise bed level between results from the model and the field measurements showed a reasonable agreement except for the some cases of local scours. However, in terms of the quantitative comparison, the change of the bed elevations for each cross section for 1998 was rather underestimated than that of the field measurements.

Delphinidin Chloride Effects on the Expression of TNF-$\alpha$ Induced Cell Adhesion Molecules (TNF-$\alpha$에 의해 유도된 세포부착분자의 발현에 대한 Delphinidin chloride의 억제 효과)

  • Koh, Eun-Gyeong;Chae, Soo-Chul;Seo, Eun-Sun;Na, Myung-Suk;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.88-94
    • /
    • 2009
  • The process of atherosclerosis begins through secretion of inflammatory cytokine or adhesion of leukocyte from damage in blood vessels and transmigration. This study was conducted to investigate the effects of delphinidin chloride (DC) in the initial process of atherosclerosis on the expression of ICAM-1 (Intracellular Adhesion Molecule-1) and VCAM-1 (Vascular Adhesion Molecule-1) related to adhesion of leukocyte at the HUVEC (human umbilical vein endothelial cell line. As a result, cell growth inhibition rate at 50 ${\mu}M$ was respectively 4, 3 and 5% without cell toxicity. As a result of morphological observation monocyte-endothelial cell adhesion assay and optical microscope carried out to measure attachment of mononuclear cells to endothelial cells induced by Tumor necrosis factor-alpha (TNF-$\alpha$) at concentrations without cell toxicity, DC concentration-dependently suppressed attachment. When effects on the expression of VCAM-1 and ICAM-1, cell adhesion molecules induced from endothelial cells by TNF-$\alpha$, were comparatively analyzed using western blot analysis and RT-PCR methods, protein of VCAM-1 and ICAM-1 and expression at the level of mRNA were concentration-dependently reduced. Taken together, the results of this studies provide evidence that DC possess an anti-metastatic activity.

A Study on the Peak Runoff Reduction Effect of Seolleung·Jeongneung Zone by Applying LID(Low Impact Development) System based on the Landscape Architectural Technology (조경기술기반 LID 시스템 적용을 통한 선릉·정릉 권역의 첨두유출량 분석)

  • Kim, Tae-Han;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.4
    • /
    • pp.126-133
    • /
    • 2017
  • This study analyzed hydrological changes of stormwater runoff of Seolleung Jeongneung zone according to the application of LID system based on landscape Architectural technology. The results are as follows. First, when flooding occurred in Gwanghwamun in July 27, 2011, the maximum instantaneous rainfall amount was 183 mm/hr recorded at 10:00 on 27th for 10 minutes, and it was confirmed that rainfall intensity more than three times as high as the maximum rainfall of 57.5 mm/hr. Second, it is possible to control peak flow rate in the case of 1,500mm of soil thickness, so that it is possible to improve the vulnerability of flood damage in Seolleung and Jeongneung zone when applying the LID system. Third, in the berm height scenario, peak flow rate control was not controled in all depth level models, but the first stormwater runoff was delayed by 4 hours and 10 minutes compared to the soil thickness scenario. It was interpreted as a relatively important indicator the soil thickness for the initial stromwater runoff reduction and the berm height for the peak runoff. Through this, the systematic adaptation of landscape-friendly ecological factors within the cultural property protection zone could theoretically confirm the effects of flood disaster prevention.

Uncoupled Solution Approach for treating Fluid-Structure Interaction due to the Near-field Underwater Explosion (근거리 수중폭발에 따른 유체-구조 상호작용 취급을 위한 비연성 해석방법)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.125-132
    • /
    • 2019
  • Because the water exposed to shock waves caused by an underwater explosion cannot withstand the appreciable tension induced by the change in both pressure and velocity, the surrounding water is cavitated. This cavitating water changes the transferring circumstance of the shock loading. Three phenomena contribute to hull-plate damage; initial shock loading and its interaction with the hull plate, local cavitation, and local cavitation closure then shock reloading. Because the main concern of this paper is local cavitation due to a near-field underwater explosion, the water surface and the waves reflected from the sea bottom were not considered. A set of governing equations for the structure and the fluid were derived. A simple one-dimensional infinite plate problem was considered to verify this uncoupled solution approach compared with the analytic solution, which is well known in this area of interest. The uncoupled solution approach herein would be useful for obtaining a relatively high level of accuracy despite its simplicity and high computational efficiency compared to the conventional coupled method. This paper will help improve the understanding of fluid-structure interaction phenomena and provide a schematic explanation of the practical problem.

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.