• Title/Summary/Keyword: initial culture condition

Search Result 185, Processing Time 0.027 seconds

Isolation of Biosurfactant-Producing P. aeruginosa Mi-7 and the Biosurfactant Production (Biosurfactant를 생산하는 P. aeruginosa. KK-7의 분리 및 Biosurfactant의 생산)

  • 강상모;김대원;김혜자
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.92-98
    • /
    • 1994
  • The bacteria which secrete surface-active agent and decrease the surface tension of culture broth were isolated from soil samples. Among them, biosurfactant producing strain KK-7 was selected and emulsification was also detected. The KK-7 produced biosurfactant not only lipid but also glucose by using carbon source. Taxonomical characterization tests have demostrated the strain KK-7 to be Pseudomonas aeruginosa. The media composition of the P. aeruginosa KK-7 for the biosurfactant production was 1% glucose, 0.5% tryptone, 0.2% yeast extract, 0.15% potas sium phosphate mono-dibasic, 0.05% MgSO$_{4}$, initial pH 8.5, at 30$\circ $C for 2 days. In this condition, the concentration of biosurfactant was reached CMC 5 in the culture broth. Surface active material was produced maximum at stationary8 phase, but emulsification power was higher at log phase than stationary phase. It was considered that P. aeruginosa KK-7 produced biosurfactant more than one type having defferent properties and each maximum production time was different. The minimun surface tension of biosurfactant in 50 mM Tris buffer (pH8.0) was 28 dyn/cm, and CMC was 1 g/L.

  • PDF

Effect of pH on the elaboration of pullulan and the production of high molecular weight pullulan by Aureobasidium pullulans.

  • Kim, Jeong-Hwa;Zhu, Il-hui;Kim, Mi-Ryeong;Lee, Ji-Hyeon;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.380-383
    • /
    • 2000
  • The effect of on the cell growth, the elaboration of pullulan, the morphology and were the effect of on the molecular weight of pullulan were investigated. A. pullulans showed maximum pullulan production when initial pH 6.5 was 11.98 g/l in shake-flask culture. In batch culture, the maximum pullulan production of 15.16 g/l was obtained at an aeration rate of 0.5 vvm. The mixture of yeast-like form and mycelial form of cells was found at the constant pH 4.5, at which condition, the elaboration of pullulan was high, about 13.31 g/l. However, pullulan with its higher molecular weight (>1,000,000) was produced at the constant pH 6.5.

  • PDF

An Antibiotic from Actinomycetes Becoming Effective for Cephalosporin Resistant Pathogenic Pesudomonas sp. (방선균이 생산하는 Cephalosporin 내성 병원성 Pseudomonas에 유효한 항생물질)

  • 하병조
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.3
    • /
    • pp.271-278
    • /
    • 1999
  • We isolated activnmycetes LAM-98-80 as strain producing an effective antibiotic for cephalosporin re-sistant pathogenic PSeudomonas sp. and identified as Streptomyces sp. LAM-98-80 from cultural and phyisological characteristics. We investigated the optimal culture conditions for producation of an anti-biotic becoming effective for cephalsporin-resistant pathogenic Pseudomonas sp. It was found that 1.5% soluble starch and 1.0% yeast extract were good as carbon and nitrogen source respectively. The pro-duction of antibiotic was also activated by 0.04% Mn2+ as 80% degree. The optimum initial pH on pro-ductio of antibiotic was pH 7.0. The culture condition for the maximal productivity of the antibiotic was at 3$0^{\circ}C$ for 5 days. The cephalosporin-resistant pathogenic Pseudomonas sp. as test bacteria was rev-ealed to resist antibiotic of cepha families but revealed to not resist those of $\beta$-lactam families ampicil-lin and amoxicillin. Parital purified antibiotic was stable for the pH from 3 to 9 and was also stable when treated at 70 $^{\circ}C$ for 1 hour, This antbiotic was effective against all gram positive and negative bac-teria but was not effective against molds and yeasts.

  • PDF

A Study on the Angular Characteristics of Photopolymer-based Hologram Recording and Reproducing Light

  • Kwang-pyo, Hong;Jiwoon, Lee;Lee-hwan, Hwang;Soon-chul, Kwon;Seunghyun, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.460-469
    • /
    • 2022
  • Increasing interest in the metaverse world these days, interest in realistic content such as 3D displays is growing. In particular, hologram images seen in movies provide viewers with an immersive display that cannot be seen in conventional 2D images. Since the first discovery of holography by Dennis Gabor in 1948, this technology has developed rapidly. Spatially, this beginning of technology like Optical hologram called analog hologram and Digital hologram such as computer-generated hologram (CGH). In analog and digital holograms, a recording angle and a recording wavelength are having important role when reproducing and display hologram. In the hologram, diffraction of light causes by unexpected formed by the synthesis from interference with object and reference light. When recording, the incident light information and mismatched reproduction light reconstruct the hologram in an undesirable direction. Reproduction light that is out of sync with incident light information with initial condition of recording will cause reconstructed image in an undesirable direction. Therefore, we analyze the holographic interference pattern generated by hologram recording in volume holograms using photopolymer and analyze the characteristics that vary depending on the angle of the reproduced light. This is expected to be used as a basic research on various holographic application that may cause as holograms are applied to industries in the future.

Bioethanol Production Based on Crude Glycerol Using Enterobacter aerogenes (Enterobacter aerogenes를 이용한 crude glycerol 기반의 바이오에탄올 생산)

  • Jung, Hong-Sub;Seong, Pil-Je;Go, A-Ra;Lee, Sang-Jun;Kim, Seung-Wook;Han, Sung-Ok;Cho, Jae-Hoon;Cho, Dae-Haeng;Kim, Yong-Hwan;Park, Chul-Hwan
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.223-228
    • /
    • 2011
  • The effects of pH, glycerol concentration and salt on cell growth and ethanol production using Enterobacter aerogenes KCTC 2190 were evaluated in the anaerobic culture condition. In condition of initial pH 5, cell growth and ethanol production were highest. An initial concentration of 10 g/L of pure glycerol gave the highest cell growth and ethanol production. However, in case of over 15 g/L of pure glycerol, they decreased. The cell growth and ethanol production decreased with the increase of salt concentration. When 10 g/L of crude glycerol was used as the carbon source, the cell growth and ethanol production were $1.32\;OD_{600}$ and 3.95 g/L, respectively, which were about 94.4% and 88.5% compared to those of pure glycerol. These result indicates that the crude glycerol produced in the biodiesel manufacturing process maybe useful as a potential carbon source for ethanol production form Enterobacter aerogenes KCTC 2190.

Isolation and Characterization of a Strain for Economical Ethanol Production (경제적 에탄올 생산을 위한 균주분리 및 특성)

  • Han, Hyo-Jung;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.267-272
    • /
    • 2006
  • Five strains producing ethanol were isolated from soil near traditional alcohol production factory in Gwangju, Korea. One of the isolated strains maintained relatively stable ethanol production in shaking culture. The isolated strain KJ was proved to be Saccharomyces italicus, based on several biochemical and morphological tests containing assimilation of carbon compounds. In investment of the most suitable carbon for ethanol production, ethanol concentration of 5.46 g/L and yield of 0.53 g-ethanol/g-glucose were obtained in condition of glucose 10 g/L in YM medium. Experimental optimal conditions for ethanol fermentation by S. italicus KJ were as follows; temperature $30^{\circ}C$, initial pH 5.0, initial concentration 10% of glucose, anaerobic condition in the liquid cultivation. When enzymatically saccharified food wastes(SFW) were used as the production medium, ethanol production yield was 0.57 g-ethanol/g-reducing sugar. Therefore, SFW will contribute to lower the production cost of ethanol for industrial application.

Optimization of Fermentation Condition for Onion Vinegar Using Acetobacter orientalis MAK88 (Acetobacter orientalis MAK88 균주를 이용한 양파 식초의 발효 최적화)

  • Lee, Jin-A;Lee, Sulhee;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.403-408
    • /
    • 2017
  • Acetic acid bacteria strains were isolated from a variety of fermented foods and fallen fruits. Among them, the strain MAK88, whose acetic acid fermentation ability, acid-tolerance, and alcohol-tolerance were high, was selected and identified as Acetobacter orientalis. A seed culture of A. orientalis MAK88 was inoculated into onion juice, and the optimum conditions of acetic acid fermentation was investigated. The optimum initial concentration of ethanol in onion juice was 5% (v/v) and in that condition, acidity was 4.31% at 144 h of fermentation. The optimum initial concentration of acetic acid was 1% and the final acidity was 5.32%. The optimum fermentation temperature was determined to be $28^{\circ}C$. The most appropriate preparation method of onion juice was to heat the onion at $121^{\circ}C$ for 15 min and produce juice with pressure followed by filtering, and then sterilization at $121^{\circ}C$ for 15 min. Prepared onion juice was used for fermentation without dilution.

Optimal Culture Conditions for Photosynthetic Microalgae Nannochloropsis oculata (광합성 미세조류 Nannochloropsis oculata의 최적배양 조건)

  • Park, Hyun-Jin;Jin, Eun-Jung;Jung, Tae-Man;Joo, Hyun;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.659-663
    • /
    • 2010
  • Microalgae has been seen all over the seawater and several species are used for human food. Specially, Nannochloropsis oculata, a photosynthetic microalgae, has been focused for a vast array of valuable nutritious compounds. In order to find high mass Nannochloropsis oculata culture conditions, some of important growth factors of pH, temperature, culture media, and $CO_2$ effect were tested. The optimal growth condition was found to be as follows : 3% artificial seawater, initial pH 8.5, and temperature $25^{\circ}C$. The alga mass and chlorophyll content were dramatically increased by applying 5% flue $CO_2$ gas (1.50 g/L algae in a continuous $CO_2$ flue; 0.76 g/L alga without $CO_2$). It was shown that the chlorophyll biosynthesis was also closely associated with alga growth.

Production of Water-Solubled Pigment from Mycelial Culture of Cordyceps scarabaeicola KEFC-C252 and Its Antimutagenic Effect (Cordyceps scarabaeicola KEFC-C252의 균사체 배양에 의한 수용성 색소의 생산과 색소의 항돌연변이 효과)

  • 이현우;손준형;최종환;예병일;신운섭;김중배;김현원
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.2
    • /
    • pp.111-116
    • /
    • 2000
  • Cultural conditions for the production of water-soluble pigment from mycelial culture of Cordyceps scarabaeicola KEFC-C252 and antimutagenic activity of the pigment were investigated. To obtain the maximum productivity of the pigment from mycelial culture of C. scarabaeicola KEFC-C252, the optimized medium was made with 1.5% sucrose, 2.5% yeast extract and initial pH 5.5. C. scarabaeicola KEFC-C252 was cultivated to reach the maximum concentration of the pigment at $26^{\circ}C$ for 108 hrs. C. scarabaeicola KEFC-C252 produced about 1.2 g/liter pigment under the optimized condition. The pigment was isolated from the culture filtrate by ethylacetate extraction, acidic precipitation and crystallization. The isolated pigment was scarlet hexagonal column crystal, and the color of the pigment was changed according to pH of the solution. The pigment showed violet in the alkaline water but showed red color in the acidic water. The pigment showed inhibitory activity against mutagenic activity induced by 4-nitroquinoline N-oxide. Furthermore, the pigment showed inhibitory activity against spontaneous mutation on Salmonella typhimurium TA98 and TAlOO.

  • PDF

Optimization of Culture Conditions for Erythritol Production by Torula sp.

  • Kim, Kyung-Ah;Noh, Bohg-Soo;Lee, Jung-Kul;Kim, Sang-Yong;Park, Yong-Cheol;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.69-74
    • /
    • 2000
  • The medium for erythritol production by Torula sp. in a 500-ml baffled flask was optimized to be 300 g/I sucrose, 10 g/I yeast extract, 3 g/I $KH_2PO_4$, and 10 mg/I $CuSO_4{\cdot}5H_2O{\;}at{\;}34^{\circ}C$ with initial pH of 5.5. Using this optimal medium, erythritol of 166 g/I was obtained after 140 h of cultivation, corresponding to 55.3% of the erythritol yield from sucrose with a productivity of 1.11 g/I/h. Optimal concentrations of carbbon and nitrogen sources in a fermentor were higher than that in a flask due to the higher oxygen supply of the fermentor. Employing the medium containing 300 g/I or 400 g/I sucrose for the determination of optimal C/N ratio, the C/N ratio was found to be more important than the nitrogen concentration for effective erythritol production, The optimal ratio of yeast extract to sucrose (g/g) was 20. The yield and productivity of erythritol were maximal in the medium containing 400 g/I sucrose and 20 g/I yeast extract. when dissolved oxygen in the culture was increased, the cell mass increased but the erythritol production was manimal in the range of 5 to 10% of dissolved oxygen. Under the optimal the rane of 5 to 10% of dissolved oxygen. Under the optimal culture condition of the fermentor, a final erythritol concentration of 200 gI was obtained after 120 h with a yield of 50% and the productivity was 1.67 g/I/h. The yield was the highest among erythritol-producting microorganisms

  • PDF