• 제목/요약/키워드: initial cracking strength

검색결과 81건 처리시간 0.025초

지하주차장 슬래브 하자 저감을 위한 콘크리트 규격 및 배합설계 (Concrete Specification and Mixing Design for the Reduction of Slab Defects in Underground Parking Lot)

  • 김한식;하정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.235-236
    • /
    • 2023
  • Concrete surfaces have weak surface strength due to bleeding and laitance, and problems such as peeling, cracking, and cracking may occur. In particular, underground parking lots can be said to be more vulnerable to peeling, breaking, and cracking if excessive loading of materials and equipment movement are not managed at the initial age after placing of concrete. Cracks, peeling, and cracking problems in slab concrete in underground parking lots of apartments can lead to leakage problems and affect finishing materials constructed on top of topping concrete, reducing the performance required for waterproof materials. Therefore, in this study, the bleeding and surface strength according to the standard of topping concrete and the use of admixture were reviewed to solve the crack, peeling, and cracking problems among the types of defects in underground parking lot slab concrete. As a result, it was derived that the optimal concrete compressive strength is 30MPa or more, and it is a reasonable performance design method to prohibit the substitution of admixtures.

  • PDF

철근 콘크리트 보의 손상평가에 대한 실험적 연구 (An Experimental Study on Damage Assessment of Reinforced Concrete Beams)

  • 노원균;심창수;홍창국;김기봉
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.60-63
    • /
    • 2004
  • The paper deals with the damage assessment of the concrete beam using static displacements and the flexural stiffness reduction of the beam was evaluated. Simply supported concrete beams were loaded at the mid-span, and the applied load level ranged $20\%,\;40\%,\;80\%$ of the flexural strength of the beam. When the displacements from the tests were increased more than $10\%$ of the initial values, flexural cracks occured. Judging from the observed cracks, damaged area of the beams were assumed and the stiffness reduction using the smeared-cracking concept was estimated to minimize the error between the test results and analytical results. Four stages of the behavior of a RC beam, which are uncracked, initial cracking, stabilized cracking and post-yielding, can be considered to assess the damage of RC beams. Main parameters for the assessment were cracking area and the stiffness reduction ratio. In each stage, damaged elements and their stiffness reduction were estimated to minimized the error.

  • PDF

Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.749-769
    • /
    • 2003
  • The structural deterioration of concrete structures due to reinforcement corrosion is a major worldwide problem. Service life of the age-degraded concrete structures is governed by the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. The corrosion of steel would result in the various corrosion products, which depending on the level of the oxidation may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion would be responsible for exerting the expansive radial pressure at the steel-concrete interface resulting in the development of hoop tensile stresses in the surrounding cover concrete. Once the maximum hoop tensile stress exceeds the tensile strength of the concrete, cracking of cover concrete would take place. The cracking begins at the steel-concrete interface and propagates outwards and eventually resulting in the through cracking of the cover concrete. The cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, analytical models have been developed considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. A sensitivity analysis has also been carried out to show the influence of the various parameters of the proposed models. The time to cover cracking is found to be function of initial material properties of the cover concrete and reinforcement plus corrosion products combine, type of rust products, rate of corrosion and the residual strength of the cover concrete. The calculated cracking times are correlated against the published experimental and analytical reference data.

초고강도 콘크리트의 수축 및 균열 특성에 관한 연구 (Shrinkage and Cracking Behavior of Ultra High Strength Concrete)

  • 김지원;손유신;이주하;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.9-12
    • /
    • 2005
  • In this study, to investigate shrinkage and cracking behavior of 120MPa UHSC, free and restrained drying shrinkage test were performed. Three strength levels(50MPa, 80MPa, 120MPa) were used and the effect of mineral admixtures(fly ash, slag) on free and restrained shrinkage was investigated. From comparing the result of pin -penetration test with the result of ring test, Time-Zero was determined as initial set. Shrinkage test results show that autogenous shrinkage of UHSC was much higher than that of HSC, VHSC and fly ash delayed cracking age in UHSC by decreasing autogenous shrinkage. Additional free concrete rings(with restraint removed) were also tested to check the influence of the geometry of the specimens on free shrinkage. And then the relationship between free shrinkage and restrained shrinkage was investigated.

  • PDF

고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구 (A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete)

  • 곽계환;박종건
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가 (Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces)

  • 유승룡;김대훈
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

스프링 체결나사의 응력부식균열 수명예측 (Stress Corrosion Cracking Lifetime Prediction of Spring Screw)

  • 고승기;류창훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.7-12
    • /
    • 2004
  • A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF

100 MPa급 수축보상 초고강도 변형경화형 시멘트 복합체를 사용한 인장부재의 인장강성 및 균열특성 (Tension-Stiffening and Cracking Behavior of 100 MPa Shrinkage-Compensated Ultra High-Strength Strain-Hardening Cement Composite (UHS-SHCC) Ties)

  • 송영재;윤현도
    • 콘크리트학회논문집
    • /
    • 제25권4호
    • /
    • pp.371-379
    • /
    • 2013
  • 이 논문에서는 100 MPa 수축보상된 초고강도 변형경화형 시멘트 복합체 및 보통 콘크리트를 사용한 인장부재의 단조 및 반복재하시 인장강성 및 균열특성을 비교 평가하였다. 재하단계별 인장부재의 전체 변형률 및 표면균열 특성은 인장부재의 양측에 설치된 두 개의 변위계와 50배율 확대 가능한 계측기에 의해 측정되었다. 시멘트 복합체의 특성에 따른 인장부재의 인장 강성 및 균열특성을 평가하기 위하여 보통 콘크리트, 수축보상 변형경화형 시멘트 복합체 및 보통 변형경화형 시멘트 복합체 등 세 종류의 시멘트 복합체가 사용되었다. 실험 결과, 초고강도 변형경화형 시멘트 복합체의 시멘트 중량의 10%를 팽창재로 대체 시 초기 수축량은 현저하게 감소되었으며 인장부재의 초기균열강도도 증가되는 경향을 보였다. 수축보상된 초고강도 변형경화형 시멘트 복합체를 사용한 인장부재는 재하 단계별로 균열이 부재길이 전면에 확산되고 균열폭이 감소되어 인장강성 특성을 개선하였다. 반복재하시 인장부재의 인장거동 특성은 단조재하시와 큰 차이를 보이지 않았다.

황토와 슬래그를 첨가한 철근콘크리트 보의 휨 거동 (The Flexural Behavior of Reinforced Hwangtoh-Concrete Beams)

  • 강홍기;양근혁;황혜주;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.149-152
    • /
    • 2004
  • This paper reports the results of experimental study on the effects of replacement level of hwangtoh or slag on the flexural behavior of reinforced hwangtoh-concrete beams. All the beams were singly reinforced with longitudinal bar ratio p=0.5pb and were tested under two-point top loading. The flexural strengths obtained from tests, such as initial cracking strength, serviceability strength, maximum strength, were compared with ACI 318-02.

  • PDF

ITO층의 두께에 따른 ITO/PET sheet의 변형거동 및 균열 형성 거동 (Influence of ITO Thickness on the Deformation and Cracking Behaviors of ITO/PET Sheets)

  • 김진열;홍순익
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2009
  • In this study, the stress-strain response and the cracking behaviors of ITO film on a PET substrate are investigated. The cracking behaviors of ITO thin films deposited on a thermoplastic semi-crystalline polymer developed for flexible display applications was investigated by means of tensile experiments equipped with an electrical measurement apparatus and an in-situ optical microscope. Electrical resistance increased gradually in the elastic-to-plastic transition region of the stress strain curves and cracks formed. Numerous cracks were found in this region, and the increase of the resistance was linked to the cracking of ITO thin films. Upon loading, the initial cracks perpendicular to the tensile axis were observed at about 1% of the total strain. They propagated to the entire sample width as the strain increased. The spacing between the horizontal cracks is thought to be determined by the fracture strength and the thickness of the ITO film as well as by the interfacial strength between the ITO and PET. The effect of the strain rate on the cracking behavior was also investigated. The crack density increased as the strain increased. The spacing between the horizontal cracks (perpendicular to the stress axis) increased as the strain rate decreased. The increase of the crack density as the strain rate decreased can be attributed to the higher fraction of the plastic strain to the total strain at a given total strain. The higher critical strain for the onset of the increase in the resistance and the crack initiation of the ITO/PET with a thinner ITO film (300 ohms/sq.) suggests a higher strength of the thinner ITO film.