• Title/Summary/Keyword: initial control vertices

Search Result 4, Processing Time 0.02 seconds

Complete 3D Surface Reconstruction from Unstructured Point Cloud

  • Kim, Seok-Il;Li, Rixie
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2034-2042
    • /
    • 2006
  • In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

Output-feedback LPV Control for Uncertain Systems with Input Saturation (입력 제한 조건을 고려한 불확실성 시스템의 출력 귀환 LPV 제어)

  • Kim, Sung Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.489-494
    • /
    • 2013
  • This paper tackles the problem of designing a dynamic output-feedback control for linear discrete-time norm-bounded uncertain systems with input saturation. By employing a LPV (Linear Parameter Varying) instead of LTI (Linear Time-Invariant) control, the useful information on interpolation parameters appearing in the procedure of representing saturation nonlinearity as a convex polytope is additionally applied in the control design procedure. By solving the addressed problem that can be recast into a convex optimization problem characterized by LMIs (Linear Matrix Inequalities) with one prescribed scalar, the vertices of convex set containing an LPV output-feedback control gain and the associated maximal invariant set of initial states are simultaneously obtained.

Complete 3D Surface Reconstruction from Unstructured Point Cloud (조직화되지 않은 점군으로부터의 3차원 완전 형상 복원)

  • Li Rixie;Kim Seokil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.570-577
    • /
    • 2005
  • In this study a complete 3D surface reconstruction method is proposed based on the concept that the vertices of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

Generation of Subdivision Surface and First-order Shear Deformable Shell Element Based on Loop Subdivision Surface (서브디비전의 다중해상도 기능을 이용한 곡면의 모델링과 유한요소 해석)

  • 김형길;서홍석;조맹효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2004
  • In the present study, Loop scheme is applied to generate smooth surfaces. To be consistent with the limit points of target surface, the initial sampling points are properly rearranged. The pointwise errors of curvature and position in the sequence of subdivision process are evaluated in the Loop subdivision scheme. A first-order shear deformable Loop subdivision triangular element which can handle transverse shear deformation of moderately thick shell are developed. The developed element is more general than the previous one based on classical shell theory, since the new one includes the effect of transverse shear deformation and has standard six degrees of freedom per node. The quartic box spline function is used as interpolation basis function. Numerical examples for the benchmark static shell problems are analyzed to assess the performance of the developed subdivision shell element and locking trouble.