• Title/Summary/Keyword: inhomogeneous

Search Result 683, Processing Time 0.027 seconds

Evaluation of Effective Soil Moisture From Natural Soil Surfaces (지표면 토양의 유효 수분함유량 산출에 관한 연구)

  • 오이석
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.117-127
    • /
    • 1995
  • In this paper several methods for retriving appropriate values of effective soil moisture contents from natural soil surfaces are introduced and compared each other. The soil medium has usually a nonuniform moisture profile; i.e., relatively dry at the top layer and relatively wet at the bottom layer. The effective soil moisture represents the quantitative value of soil moisture of the inhomogeneous soil medium in an average sense. A simple method is an arithmetic averaging of soil moisture values obtained from several layers of a soil surface. Otherwise, the penetration depths can be computed from a homogeneous and an inhomogeneous soil surfaces and compared in order to obtain the effective soil mosture. The other method is to obtain the effective soil moisture by comparing the reflectivities from both of a homogeneous and an inhomogeneous surfaces. Those methods are compared and the reflectivity technique is examined in more detail since the rader scattering is dominated by the reflectivity instead of the penetration.

A Study on Fracture Property of Adhesive Interface at Tapered Double Cantilever Beam with Inhomogeneous Composite Material due to Loading Conditions of In-plane and Out-plane (면내 및 면외 하중 조건들에 따른 이종 복합 소재를 가진 경사진 이중외팔보에서의 접착계면의 파괴 특성 연구)

  • Lee, Jung-Ho;Kim, Jae-Won;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2020
  • At the engineering and industrial areas, the lightweight composite material has been substituted with the metals, such as steel at the structural parts. This composite material has been applied by the adhesive bonding method, as well as the joint methods with rivets, welds or bolts and nuts. The study on the strength characteristics of adhesive interface is necessarily required in order to apply the method to composite materials. CFRP specimens as the fiber reinforced plastic composites were manufactured easily and this study was carried out. The static experiments were performed under the loading conditions of in-plane and out-plane shears with the inhomogeneous composite TDCB specimens with CFRP, aluminum (Al6061), and aluminum foam (Al-foam). Through the result of this study, the durability on the inhomogeneous composite structure with adhesive interface was investigated by examining the fracture characteristic and the point in time.

3-D Near Field Localization Using Linear Sensor Array in Multipath Environment with Inhomogeneous Sound Speed (비균일 음속 다중경로환경에서 선배열 센서를 이용한 근거리 표적의 3차원 위치추정 기법)

  • Lee Su-Hyoung;Choi Byung-Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2006
  • Recently, Lee et al. have proposed an algorithm utilizing the signals from different paths by using bottom mounted simple linear array to estimate 3-D location of oceanic target. But this algorithm assumes that sound velocity is constant along depth of sea. Consequently, serious performance loss is appeared in real oceanic environment that sound speed is changed variously. In this paper, we present a 3-D near field localization algorithm for inhomogeneous sound speed. The proposed algorithm adopt localization function that utilize ray propagation model for multipath environment with linear sound speed profile(SSP), after that, the proposed algorithm searches for the instantaneous azimuth angle, range and depth from the localization cost function. Several simulations using linear SSP and non linear SSP similar to that of real oceans are used to demonstrate the performance of the proposed algorithm. The estimation error in range and depth is decreased by 100m and 50m respectively.

The Preliminary Study on the Quantitative Analysis of Quarts by Fourier Transform Infrared Spectrophotometric Direct on Filter(FTIR-DOF) Method -Effects of filter materials, inhomogeneity of deposition, and humidity- (Fourier Transform Infrared Spectrophotometric Direct on Filter 방법을 이용한 석영 분석의 기초 연구 - 필터재질, 비균일 침착 및 습도의 영향 -)

  • Phee, Young Gyu;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Although the Fourier Transform Infra-Red spectrophotometric Direct on Filter(FTIR-DOF) method is a useful analytical technique for quantifying quartz content in respirable dust samples, a number of analytical problems must be taken into consideration such as, to name only a few, inhomogeneous deposition of particles, level of environmental humidity, uneven surface of the filter, and interfering minerals in the sample. This study was designed to select the most suitable wavelength and proper filter material for the method, and to investigate effects of humidity and inhomogeneous deposition of particles on the filter. Samples of respirable dust, created in a dust chamber containing standard material of quartz, were collected using a cyclone equipped with a 25mm filter as a collection medium. The results were as follows; 1. Among seven (7) commercially available filters tested for the FTIR-DOF method, the DM 800 filter showed the best analytical performance having the lowest background absorbance bands and no overlapping peaks at 799, 779, and $695cm^{-1}$. 2. The variations of absorbance due to humidity ranged from 1.0% to 3.3% for $799cm^{-1}$, 1.0% to 3.3% for $779cm^{-1}$, and 8.9%~20.9% for $695cm^{-1}$ peaks, respectively. The $699cm^{-1}$ peak was proved to be most vulnerble to environmental humidity for quantitative analysis of quartz. 3. As for effects of inhomogeneous deposition of samples, the highest variation of absorbance of 10.9% ($13.5{\mu}g$) was observed when using the 695cm-1. The variations of absorbance from the other two peaks, 799 and $779cm^{-1}$, ranged from 1.2 to 3.2%, and 1.4 to 4.1%, respectively. Therefore, the $799cm^{-1}$ peak was considered to be most reliable for quantitative analysis of quartz. The results of this study suggest that, for quantitative analysis of quartz in the respirable dust samples, use of the $799cm^{-1}$ peak can minimize the influence of environmental humidity and inhomogeneous deposition of particles on the filter. The FTIR-DOF method, if adopted for routine analysis of quartz in the respirable dust samples, could save sample preparation time and efforts substantially and also could increase analytical throughputs. Since use of the $799cm^{-1}$ peak is prone to be affected by interferences in the sample, further research on minimizing the effects is needed.

IN-VIVO DOSE RECONSTRUCT10N USING A TRANSMISION FACTOR AND AN EFFECTIVE FIELD CONCEPT (팬텀투과계수와 유효조사면 개념을 이용한 종양선량 확인에 관한 연구)

  • Kim, You-Hyun;Yeo, In-Hwan;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The aim of this study Is to develop a simple and fast method which computes in-vivo doses from transmission doses measured doting patient treatment using an ionization chamber. Energy fluence and the dose that reach the chamber positioned behind the patient is modified by three factors: patient attenuation, inverse square attenuation. and scattering. We adopted a straightforward empirical approach using a phantom transmission factor (PTF) which accounts for the contribution from all three factors. It was done as follows. First of all, the phantom transmission factor was measured as a simple ratio of the chamber reading measured with and without a homogeneous phantom in the radiation beam according to various field sizes($r_p$), phantom to chamber distance($d_g$) and phantom thickness($T_p$). Secondly, we used the concept of effective field to the cases with inhomogeneous phantom (patients) and irregular fields. The effective field size is calculated by finding the field size that produces the same value of PTF to that for the irregular field and/or inhomogeneous phantom. The hypothesis is that the presence of inhomogeneity and irregular field can be accommodated to a certain extent by altering the field size. Thirdly, the center dose at the prescription depth can be computed using the new TMR($r_{p,eff}$) and Sp($r_{p,eff}$) from the effective field size. After that, when TMR(d, $r_{p,eff}$) and SP($r_{p,eff}$) are acquired. the tumor dose is as follows. $$D_{center}=D_t/PTF(d_g,\;T_p){\times}(\frac{SCD}{SAD})^2{\times}BSF(r_o){\times}S_p(r_{p,eff}){\times}TMR(d,\;r_{p,eff})$$ To make certain the accuracy of this method, we checked the accuracy for the following four cases; in cases of regular or irregular field size, inhomogeneous material included, any errors made and clinical situation. The errors were within 2.3% for regular field size, 3.0% irregular field size, 2.4% when inhomogeneous material was included in the phantom, 3.8% for 6 MV when the error was made purposely, 4.7% for 10 MV and 1.8% for the measurement of a patient in clinic. It is considered that this methode can make the quality control for dose at the time of radiation therapy because it is non-invasive that makes possible to measure the doses whenever a patient is given a therapy as well as eliminates the problem for entrance or exit dose measurement.

  • PDF

Evaluation of the Secondary Particle Effect in Inhomogeneous Media for Proton Therapy Using Geant4 Based MC Simulation (Geant4 몬테칼로 시뮬레이션을 활용한 불균질 매질에서의 양성자의 이차입자 영향 분석)

  • Park, So-Hyun;Jung, Won-Gyun;Rah, Jeong-Eun;Park, Sung-Yong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.311-322
    • /
    • 2010
  • In proton therapy, the analysis of secondary particles is important due to delivered dose outside the target volume and thus increased potential risk for the development of secondary cancer. The purpose of this study is to analyze the influence of secondary particles from proton beams on fluence and energy deposition in the presence of inhomogeneous material by using Geant4 simulation toolkit. The inhomogeneity was modeled with the condition that the adipose tissue, bone and lung equivalent slab with thickness of 2 cm were inserted at 30% (Plateau region) and 80% (Bragg peak region) dose points of maximum dose in Bragg curve. The energy of proton was varied with 100, 130, 160 and 190 MeV for energy dependency. The results for secondary particles were presented for the fluence and deposited energy of secondary particles at inhomogeneous condition. Our study demonstrates that the fluence of secondary particles is neither influenced insertion of inhomogeneties nor the energy of initial proton, while there is a little effect by material density. The deposited energy of secondary particles has a difference in the position placed inhomogeneous materials. In the Plateau region, deposited energy of secondary particles mostly depends on the density of inserted materials. Deposited energy in the Bragg region, in otherwise, is influenced by both density of inserted material and initial energy of proton beams. Our results suggest a possibility of prediction about the distribution of secondary particles within complex heterogeneity.

Inhomogeneous Helmholtz equation for Water Waves on Variable Depth (비균질 Helmholtz 방정식을 이용한 변동 수심에서의 파랑변형)

  • Kim, Hyo-Seob;Jang, Chang-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.174-180
    • /
    • 2010
  • The inhomogeneous Helmholtz equation is introduced for variable water depth and potential function and separation of variables are introduced for the derivation. Only harmonic wave motions are considered. The governing equation composed of the potential function for irrotational flow is directly applied to the still water level, and the inhomogeneous Helmholtz equation for variable water depth is obtained. By introducing the wave amplitude and wave phase gradient the governing equation with complex potential function is transformed into two equations of real variables. The transformed equations are the first and second-order ordinary differential equations, respectively, and can be solved in a forward marching manner when proper boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient at a side boundary. Simple spatially-centered finite difference numerical schemes are adopted to solve the present set of equations. The equation set is applied to two test cases, Booij’ inclined plane slope profile, and Bragg’ wavy bed profile. The present equations set is satisfactorily verified against other theories including the full linear equation, Massel's modified mild-slope equation, and Berkhoff's mild-slope equation etc.

Effect of Shear Deformation During Drawing on Inhomogeneous Microstructures and Textures in High Purity Copper Wires After Annealing (고순도 구리 선재의 어닐링 후 불균질 미세조직과 집합조직에 미치는 신선 시 전단 변형의 영향)

  • Park, Hyun;Kim, Sang-Hyeok;Kim, Se-Jong;Lee, Hyo-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.861-869
    • /
    • 2018
  • To determine the origin of the inhomogeneous microstructure and texture observed in drawn and annealed high purity copper wires, two kinds of drawing process conditions and their influence was investigated. The regular condition, based on a symmetric die, and a condition designed intentionally to produce an inhomogeneous shear deformation using an asymmetric die were employed. The difference in intensity of <111>-<100> distributed texture between the two wires confirmed that the wire drawn under the asymmetric die condition experienced a higher amount of shear deformation. The extensive shear strain in the wire drawn under the asymmetric die condition gave rise to inhomogeneous primary and secondary recrystallization behavior. After annealing at $200^{\circ}C$, grains with <100> texture, which were larger than the surrounding recrystallized grains, were extensively present on one half circle of the wire drawn under the asymmetric die condition, while larger grains with <100> were sparsely observed around the middle region of the wire drawn under the regular condition. Interestingly, the area where the larger grains with <100> texture existed was identical to the area where the high shear strain occurred during drawing in both wires. During annealing at $400^{\circ}C$, grains with <112> texture started to grow abnormally at the center of both wires as a result of secondary recrystallization. After annealing at $900^{\circ}C$ grains with <112> due to secondary recrystallization occupied the entire region of the wire drawn under the regular condition. On the other hand, in the wire drawn under the asymmetric die condition and then annealed at $900^{\circ}C$, the <100> oriented grains as a result of the normal grain growth of the larger <100> grains which were observed after annealing at $200^{\circ}C$, coexisted with the abnormally grown <112> grains. These results indicate that dynamic recrystallization induced by the shear strain during drawing plays an important role in the inhomogeneity of the microstructure and texture of wires after annealing.

ESTIMATION OF THE SINGULAR COEFFICIENT IN THE STEADY STATE DIFFUSION EQUATION

  • Cho, Chung-Ki
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.309-323
    • /
    • 2002
  • This paper studies the parameter estimation problem for a steady state flow in an inhomogeneous medium. Our approximation scheme could be used when the diffusion coefficient is singular. The function space parameter estimation convergence(FSPEC) is considered and numerical simulations are performed.