• Title/Summary/Keyword: inhibitory receptor

Search Result 672, Processing Time 0.027 seconds

Allelopathic Effect of Ganghwa mugwort (Artemisia spp.) on Seed Germination and Seedling Growth of Plants (강화약쑥 추출물이 종자발아 및 유식물 생장에 미치는 알레로파시 효과)

  • Lee, Joo-Hwa;Byeon, Ji-Hui;Lee, Jeong-Hoon;Park, Chun-Geon;Park, Chung-Berm;Cho, Joon-Hyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.589-605
    • /
    • 2012
  • This study was conducted to identify allelopathic effect of Ganghwa domestic Artemisia spp., named Sajabalssuk and Ssajuarissuk, for various receptor plants including clover (Trifolium repens L.), alfalfa (Medicago sativa L.), lawn grass (Zoysia japonica Steud.), dandelion (Taraxacum platycarpum Dahlst.), and dahurianpatrinia (Patrinia scabiosaefolia Fisch. ex Trevir). Receptor plants were treated with the aqueous and essential oil extract of Artemisia plants. In consequence, their allelopathic effects were evaluated by measuring seed germination rates, seedling growth, and dry weights of the receptor plants. The seed germination and seedling growth of the receptor plants were inhibited by all treatments of both aqueous and essential oil extracts of the Artemisia plants, and, in addition, the inhibitory effects were increased according to the higher concentration. Among the donor plants, A. $sp.^*III$ showed most effective allelopathic effect. Comparing the alleopathic effect among the receptor plants, seed germination was most inhibited in lawn grass while inhibitory effect of seedling growth was comparatively higher in dandelion. Although inhibitory effects were comparatively lower, the allelopathic effects of Artemisia plants were identified in clover and alfalfa since the seedling growth of these plants were inhibited more than 70%. Thus, in result, Ganghwa domestic Artemisia spp. could be possibly used for weed control since natural products of the plants showed inhibitory effects on seed germination and seedling growth of various receptor plants.

Leukemia inhibitory factor and its receptor: expression and regulation in the porcine endometrium throughout the estrous cycle and pregnancy

  • Yoo, Inkyu;Chae, Soogil;Han, Jisoo;Lee, Soohyung;Kim, Hyun Jong;Ka, Hakhyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.192-200
    • /
    • 2019
  • Objective: Leukemia inhibitory factor (LIF) binds to a heterodimeric receptor composed of LIF receptor (LIFR) and glycoprotein 130 (GP130) to transmit signals into the cell. LIF plays an important role in reproduction by regulating immune response, decidualization, and implantation in several species. However, the expression of LIF and LIFR in the endometrium throughout the estrous cycle and pregnancy in pigs is not fully understood. Methods: We analyzed the expression of LIF and LIFR in the endometrium on days 0 (estrus), 3, 6, 9, 12, 15, and 18 of the estrous cycle, and days 12, 15, 30, 60, 90, and 114 of pregnancy, in conceptuses on days 12 and 15, and in chorioallantoic tissues on days 30, 60, 90, and 114 of pregnancy in pigs. We also determined the effects of estrogen and progesterone on the expression of LIF and LIFR in endometrial tissues. Results: The expression of LIF increased in the endometrium during the late diestrus phase of the estrous cycle and during mid- to late- pregnancy, while the expression of LIFR increased during early pregnancy. The expression of LIF was induced by increasing doses of estrogen, whereas the expression of LIFR was induced by increasing doses of progesterone. Conclusion: These results indicate that the expression of LIF and its receptor LIFR in the endometrium is regulated in a stage-specific manner during the estrous cycle and pregnancy, suggesting that LIF and its receptor signaling system may play critical roles in regulating endometrial function in pigs.

Inhibitory Mechanism of Propranolol on the Effects of VIP in Peripheral Blood T-lymphocytes of Rat (흰쥐 말초혈액 T-림프구에서 Vasoactive Intestinal Polypeptide의 효과에 대한 Propranolol의 억제 기전)

  • Ahn, Young-Soo;Choo, Sung-Yee;Kang, Dong-Won;Lee, Sang-Hun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.219-231
    • /
    • 1995
  • Vasoactive intestinal polypeptide(VIP) and ${\beta}-adrenergic$ agonists have immunomodultory effects on the peripheral blood T-lymphocytes of rat through their own receptors. Both of them utilize the same signal transduction pathway. That is, the stimulatory guanine nucleotide binding protein(G protein) mediates the receptor-adenylyl cyclase coupling, producing intracellular increase of cyclic adenosine monophosphate(cAMP). In the previous experiment, propranolol, a ${\beta}-adrenergic$ receptor blocker, inhibited the VIP-induced protein phosphorylation in lymphocytes. However, propranolol could not block the effect induced by forskolin. Therefore, this study was designed to elucidate the mechanism of the inhibitory action of propranolol on the effects of VIP. Using peripheral blood lymphocytes of rats, the effect of propranolol on the receptor binding characteristics of VIP was observed. And the effects of propranolol were compared to the effects of timolol on the cAMP increase induced by isoproterenol, VIP or forskolin. The results obtained are as follows. 1) Receptor binding study showed no significant differences in the affinity or density of VIP receptor between the control and propranolol-pretreated groups. 2) VIP-induced increase of cAMP was inhibited by propranolol, but not by timolol. 3) Both propranolol and timolol suppressed the isoproterenol-induced cAMP increase. 4) Propranolol also inhibited the histamine-induced cAMP increase. 5) Propranolol did not inhibit the increase of cAMP stimulated by forskolin. 6) Lidocaine did not block the VIP-induced cAMP increase. These results show that the inhibitory mechanism of propranolol is not related to ${\beta}-adrenergic$ receptor or its membrane stabilizing effect, and it is suggested that propranolol can block the effects of VIP by inhibiting the intermediate step between the VIP receptor and adenylyl cyclase.

  • PDF

The Effect of Korean Red Ginseng Saponins on the Recombinant Serotonin Type 3 Receptor Expressed in Xenopus Oocytes (Xenopus oocytes에서 발현된 유전자재조합 세로토닌 제3형 수용체에 대한 한국산 홍삼 사포닌의 효과)

  • 구본녀;강정완;배선준;김미경;고성룡;민경태
    • Journal of Ginseng Research
    • /
    • v.25 no.2
    • /
    • pp.74-81
    • /
    • 2001
  • The effect of Korean Ginseng saponins (total saponin, PD saponin and PT saponin) on the serotonin type 3 receptor, which is known to be involved in nausea and vomiting following anticancer chemotherapy or the general anesthesia, was investigated. after in vitro transcribed recombinant serotonin type 3 receptor in the Xenopus laevis oocyte, classic two electrodes voltage clamp technique was used. All of ginseng saponins inhibited the response of the agonist, serotonin, on the serotonin type 3 receptor in a dose-dependent manner. PT saponin showed to have the inhibitory effect more than 2 times as potent as PD saponin. Total saponin shifted the serotonin dose response plot to the right (EC$\_$50/, 0.70$\pm$0.17 $\mu$M into 3.57$\pm$1.42 $\mu$M, and Hill coefficient, 2.14$\pm$0.60 into 1.52$\pm$1.00). Ginseng saponin did not change the reversal potential (∼0 mV) of serotonin type 3 receptor. These results suggest that Korean ginseng saponin may have the inhibitory effect on serotonin type 3 receptor.

  • PDF

Phasic and Tonic Inhibition are Maintained Respectively by CaMKII and PKA in the Rat Visual Cortex

  • Joo, Kayoung;Yoon, Shin Hee;Rhie, Duck-Joo;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • Phasic and tonic ${\gamma}$-aminobutyric acidA ($GABA_A$) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system. In the present study, we investigated how phasic and tonic inhibition are maintained and regulated by different signaling cascades. Inhibitory postsynaptic currents were measured as either electrically evoked events or spontaneous events to investigate regulation of phasic inhibition in layer 2/3 pyramidal neurons of the rat visual cortex. Tonic inhibition was assessed as changes in holding currents by the application of the $GABA_A$ receptor blocker bicuculline. Basal tone of phasic inhibition was maintained by intracellular $Ca^{2+}$ and $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII). However, maintenance of tonic inhibition relied on protein kinase A activity. Depolarization of membrane potential (5 min of 0 mV holding) potentiated phasic inhibition via $Ca^{2+}$ and CaMKII but tonic inhibition was not affected. Thus, phasic and tonic inhibition seem to be independently maintained and regulated by different signaling cascades in the same cell. These results suggest that neuromodulatory signals might differentially regulate phasic and tonic inhibition in response to changes in brain states.

Central Involvement of Benzodiazepine Receptor on the Muscimol-induced Inhibition of Micturition Reflex in Rats (흰쥐의 뮤시몰투여에 의한 배뇨반사억제효과에 대한 벤조디아제핀수용체의 영향)

  • Huh, In-Hoi;Oh, Ho-Jung
    • YAKHAK HOEJI
    • /
    • v.36 no.5
    • /
    • pp.496-505
    • /
    • 1992
  • The correlation between GABA receptors($GABA_A$ and $GABA_B$ receptor) and benzodiazepine receptor on the saline infusion-induced micturition reflex contraction was studied in the female rat. To investigate the effect of ${\gamma}-aminobutyric$ acid(GABA) on the micturition reflex, exogenous GABA(10 mg/kg) and GABA transaminase inhibitor(aminooxyacetic acid; AOAA $1\;{\mu}g$) were administered intravenously(i.v.) and intracerebroventriculary(i.c.v.), respectively. In result, both GABA and AOAA inhibited the saline induced micturition reflex contraction. This AOAA induced inhibition of micturition reflex was blocked by both bicuculine. $GABA_A$ receptor antagonist, and Ro 15-1788, benzodiazepine receptor antagonist. Muscimol, $GABA_A$ receptor antagonist($0.1\;{\mu}g$ i.c.v., $3\;{\mu}g$ intrathecal; i.t., 1 mg/kg i.v.) and baclofen, $GABA_A$ receptor agonist($1\;{\mu}g$ i.c.v., $3\;{\mu}g$ i.t., 1 mg/kg i.v.) also inhibited the bladder contraction. Pretreatment of bicuculline($1\;{\mu}g$ i.c.v.), but not of 5-aminovaleric acid(AVA, $1\;{\mu}g$ i.c.v.), $GABA_B$ receptor antagonist blocked the central inhibition of muscimol. These inhibitory effects were reversed by Ro15-1788 but were potentiated by flurazepam, benzodiazepine receptor antagonist. On the other hand, the inhibitory effects of baclofen were not affected by Ro 15-1788. Diazepam and flurazepam also inhibited the micturition reflex contraction when they were administered $3\;{\mu}g$ i.c.v., $10\;{\mu}g$ i.t., $10\;{\mu}M$, $30\;{\mu}M$ transurethrally, respectively. In conclusion, these results suggest that the micturition reflex is mediated by $GABA_A$, $GABA_B$ receptor and benzodiazepine receptor. The bezodiazepines increase the receptor binding of GABA to the $GABA_A$ receptor, so that the benzodiiazepines show the synergistic effect on the inhibition of the micturition reflex contraction, but not to the $GABA_B$ receptor.

  • PDF

Differential Inhibitory Action of Taurine between Electrically Evoked Response and Low $Mg^{++}-Induced$ Spontaneous Activity in the CA1 Area of the Rat Hippocampal Slices

  • Baek, Soo-Youn;Yang, Sung-Gu;Lee, Chang-Joong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.467-475
    • /
    • 1997
  • Although one of the major physiological functions of taurine(2-aminoethanesulfonic acid) is the inhibitory action on the central nervous system(CNS), the mechanism of taurine in controlling the neuronal excitation in the CNS has been in controversy. Electrically evoked pEPSP and spontaneous activity induced by the perfusion of low $Mg^{++}-ACSF$ were recorded in the CA1 pyramidal cell layer of the hippocampal slice. To test the inhibitory effect of taurine on spontaneous responses, taurine was treated for 2 min at various concentrations(1 mM-10 mM). Taurine reduced the spontaneous activity by 22.2% at 1 mM, and 100% at 2 mM in low $Mg^{++}-ACSF$. Evoked response was induced by electrical stimulation of Schaffer collateral-commissural fibers. Taurine reduced the evoked response by 11.68% at 3 mM, and 24.25% at 5 mM. Even 20 mM of taurine reduced the evoked response only by 24 % after 5 min treatment. That is, the inhibitory efficacy was much higher in spontaneous activity than in evoked response. The $GABA_A$ receptor antagonist, 100 uM bicuculline, blocked the inhibitory action of taurine, while $GABA_B$ receptor antagonist, 700 uM phaclofen, did not. Taurine blocked the spontaneous activity in the presence of CNQX, and did not block the electrically evoked responce in the presence of APV. The results suggest that taurine causes hyperpolarization in the cell by binding to $GABA_A$ receptor and preferentially attenuates NMDA receptor-mediated hyperexcitation, leaving synaptic transmission unmodified.

  • PDF

Inhibitory and Excitatory Postsynaptic Currents of Medial Vestibular Nucleus Neurons of Rats

  • Chun, Sang-Woo;Choi, Jeong-Hee;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • The medial vestibular nucleus (MVN) neurons are controlled by excitatory synaptic transmission from the vestibular afferent and commissural projections, and by inhibitory transmission from interneurons. Spontaneous synaptic currents of MVN neurons were studied using whole cell patch clamp recording in slices prepared from 13- to 17-day-old rats. The spontaneous inhibitory postsynaptic currents (sIPSCs) were significantly reduced by the $GABA_A$ antagonist bicuculline ($20{\mu}M$), but were not affected by the glycine antagonist strychnine ($1{\mu}M$). The frequency, amplitude, and decay time constant of sIPSCs were $4.3{\pm}0.9$ Hz, $18.1{\pm}2.0$ pA, and $8.9{\pm}0.4$ ms, respectively. Spontaneous excitatory postsynaptic currents (sEPSCs) were mediated by non-NMDA and NMDA receptors. The specific AMPA receptor antagonist GYKI-52466 ($50{\mu}M$) completely blocked the non-NMDA mediated sEPSCs, indicating that they are mediated by an AMPA-preferring receptor. The AMPA mediated sEPSCs were characterized by low frequency ($1.5{\pm}0.4$ Hz), small amplitude ($13.9{\pm}1.9$ pA), and rapid decay kinetics ($2.8{\pm}0.2$ ms). The majority (15/21) displayed linear I-V relationships, suggesting the presence of GluR2-containing AMPA receptors. Only 35% of recorded MVN neurons showed NMDA mediated currents, which were characterized by small amplitude and low frequency. These results suggest that the MVN neurons receive excitatory inputs mediated by AMPA, but not kainate, and NMDA receptors, and inhibitory transmission mediated by $GABA_A$ receptors in neonatal rats.

Development of Natural Killer Cells from Hematopoietic Stem Cells

  • Yoon, Suk Ran;Chung, Jin Woong;Choi, Inpyo
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Natural killer (NK) cells play a crucial role in innate immune system and tumor surveillance. NK cells are derived from $CD34^+$hematopoietic stem cells and undergo differentiation via precursor NK cells in bone marrow (BM) through sequential acquisition of functional surface receptors. During differentiation of NK cells, many factors are involved including cytokines, membrane factors and transcription factors as well as microenvironment of BM. NK cells express their own repertoire of receptors including activating and inhibitory receptors that bind to major histocompatibility complex (MHC) class I or class I-related molecules. The balance between activating and inhibitory receptors determines the function of NK cells to kill targets. Binding of NK cell inhibitory receptors to their MHC class I-ligand renders the target cells to be protected from NK cell-mediated cytotoxicity. Thus, NK cells are able to discriminate self from non-self through MHC class I-binding inhibitory receptor. Using intrinsic properties of NK cells, NK cells are emerging to apply as therapeutic agents against many types of cancers. Recently, NK cell alloactivity has also been exploited in killer cell immunoglobulin-like receptor mismatched haploidentical stem cell transplantation to reduce the rate of relapse and graft versus host disease. In this review, we discuss the basic mechanisms of NK cell differentiation, diversity of NK cell receptors, and clinical applications of NK cells for anti-cancer immunotherapy.