• Title/Summary/Keyword: inhibitor K562

Search Result 31, Processing Time 0.025 seconds

Lactosylceramide α2,3-Sialyltransferase Is Induced Via a PKC/ERK/CREB-dependent Pathway in K562 Human Leukemia Cells

  • Choi, Hee-Jung;Park, Young-Guk;Kim, Cheorl-Ho
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.138-144
    • /
    • 2007
  • Previously we showed that the human GM3 synthase gene was expressed during the induction of megakaryocytic differentiation in human leukemia K562 cells by phorbol 12-myristate 13-acetate (PMA). In this study we found that treatment of PMA-induced K562 cells with $G{\ddot{o}}6976$, a specific inhibitor of PKC, and U0126, an inhibitor of the extracellular signal-regulated kinase (ERK) reduced expression of GM3 synthase, whereas wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K) did not. Moreover, activation of ERK and cAMP response element binding protein (CREB) was prevented by pretreatment with $G{\ddot{o}}6976$ and U0126. PMA stimulated the promoter activity of the 5'-flanking region from -177 to -83 region of the GM3 synthase gene, and mutation or deletion of a CREB site located around -143 of the promoter reduced PMA-stimulated promoter activity, as did the inhibitors $G{\ddot{o}}6976$ and U0126. Our results demonstrate that induction of GM3 synthase during megakaryocytic differentiation in PMA-stimulated human leukemia K562 cells depends upon the PKC/ERK/CREB pathway.

Selective Inhibition of Bicyclic Tetrapeptide Histone Deacetylase Inhibitor on HDAC4 and K562 Leukemia Cell

  • Li, Xiao-Hui;Huang, Mei-Ling;Wang, Shi-Miao;Wang, Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7095-7100
    • /
    • 2013
  • Histone deacetylase (HDAC) inhibitors of cyclic peptide have been proved to be the most complex but the most stable and relative efficient inhibitors because of their large cap region. In this paper, a series of studies were carried out to evaluate the efficacy of synthetic bicyclic tetrapeptide inhibitors 1-5 containing hydroxamic acid referring molecular docking, anti-proliferation, morphology and apoptosis. Docking analysis, together with enzyme inhibitory results, verified the selective capability of inhibitor 4 to HDAC4, which might closely related to haematological tumorigenesis, with Phe227, Asp115, Pro32, His198 and Ser114 participating into hydrophobic interactions and Van der Waals force which was familiar with former study. Moreover, inhibitor 4 inhibited K562 cell line at the $IC_{50}$ value of 1.22 ${\mu}M$ which was 51-67 times more efficient than that for U937 and HL60 cell lines. Inhibitor 4 exhibited the cell cycle-arrested capability to leukemia at S phase or G2/M phase as well as apoptosis-induced ability in different degrees. Finally, we considered that bicyclic tetrapeptide inhibitors were promising inhibitors used in cancer treatment and inhibitor 4 could prevent K562 cell line well from proliferation, arrest cell cycle and induce K562 towards apoptosis to achieve the goals of reversing cancer cells which could become a potential leukemia therapeutic agent in the future.

Suppressive Effects of a Truncated Inhibitor K562 Protein-Derived Peptide on Two Pro-inflammatory Cytokines, IL-17 and TNF-α

  • Hwang, Jong Tae;Yu, Ji Won;Nam, Hee Jin;Song, Sun Kwang;Sung, Woo Yong;Kim, Yongae;Cho, Jang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1810-1818
    • /
    • 2020
  • Inhibitor K562 (IK) protein was first isolated from the culture medium of K562 cells, a leukemia cell line, and is an inhibitory regulator of interferon-γ-induced major histocompatibility complex class II expression. Recently, exogenous truncated IK (tIK) protein showed potential as a therapeutic agent for inflammation-related diseases. In this study, we designed a novel putative anti-inflammatory peptide derived from tIK protein based on homology modeling of the human interleukin-10 (hIL-10) structure, and investigated whether the peptide exerted inhibitory effects against pro-inflammatory cytokines such as IL-17 and tumor necrosis factor-α (TNF-α). The peptide contains key residues involved in binding hIL-10 to the IL-10 receptor, and exerted strong inhibitory effects on IL-17 (43.8%) and TNF-α (50.7%). In addition, we used circular dichroism spectroscopy to confirm that the peptide is usually present in a random coil configuration in aqueous solution. In terms of toxicity, the peptide was found to be biologically safe. The mechanisms by which the short peptide derived from human tIK protein exerts inhibitory effects against IL-17 and TNF-α should be explored further. We also evaluated the feasibility of using this novel peptide in skincare products.

Purification and Chemical Identification of the Inhibitor on Bleb Formation of K562 Cell Induced by Phorbol Ester from Actinornycetes Isolate No. 1882-5 (방선균 분리주 No. 1882-5로부터 Phorbol Ester에 의해 유도되는 K562 Cell의 소포형성을 억제하는 물질의 분리와 동정)

  • 안종석;안순철;박문수;김보연;민태익;이현선;오원근
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.565-573
    • /
    • 1992
  • We isolated Actinomycetes strain No. 1882-5, which produces the inhibitor on the bleb formation of K562 cell induced by phorbol ester, from soil sample. Through solvent extraction, Amberlite XAD-4, silica and Lobar low pressure LC, antifungal antibiotic MT 1882-1 and bleb forming inhibitor MT 1882-II were purified from strain No. 1882-5. MT 1882-1 was identified as piericidin $A_{1}$($C_{25}H_{37}0_4N$, M.W. 415) and MT 1882-11 as glucopiericidin A($C_{31}H_{47}0_9N$, M.W. 577) from the analysis of physico-chemical properties and UV, $^1H-NMR$, $^13C-NMR$, and mass spectra of these compounds.

  • PDF

MT-2007, Protein Kinase C Inhibitor from Aetinomycetes Isolate No. 2007-18 (방선균 분리주 No 2007-18이 생산하는 Protein Kinase C 저해물질, MT-2007)

  • 안종석;박문수;박찬선;윤병대;민태익;안순철;오원근;이현선;윤병대
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.54-58
    • /
    • 1993
  • During the screening of inhibitors against protein kinase CCPKC) and the bleb formation of K562 cell induced by phorbol ester from microbial secondary metabolites, MT-2007 was purified by solvent extraction, and chromatographic techniques from Actinomycetes isolate No. 2007-18. It showed completely suppression of bleb formation of K562 cell surface induced by phorbol 12.13dibutylate at the concentration of 503.9 11M and ICso on PKC was 31.4 11M. Its structure was postulated as lasalocid A sodium salt by physico-chemical properties and UV, IR. MS, IH-NMR.

  • PDF

Chaetoglobosin A, an Inhibitor of Bleb Formation on K562 Cells Induced by Phorbol 12, 13-Dibutyrate

  • Ko, Hack-Ryong;Kim , Bo-Yeon;Ahn , Soon-Cheol;Oh, Won-Keun;Kim, Jin-Hee;Lee, Hyun-Sun;Kim, Hwan-Mook;Han, Sang-Bae;Mheen, Tae-Ick;Ahn, Jong-Seog
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.705-709
    • /
    • 1998
  • In the course of screening for the substances suppressing bleb formation of K562 cell induced by phorbol 12, 13-dibutyrate (PDBu), an inhibitor, chaetoglobosin A (CgA) was isolated from a cultured broth of unidentified fungus. CgA showed a strong inhibitory activity with the $IC_{50}$ value of 60 pM against bleb formation on K562 cells induced by PDBu, but it did not inhibit the activity of protein kinase C (PKC) in vitro. The inhibitory activity of CgA might be due to the modulation of actin filaments on the cell membrane. CgA exhibited strong cytotoxicity against various human cancer cell lines.

  • PDF

Contribution of HSP90 Cleavage to the Cytotoxic Effect of Suberoylanilide Hydroxamic Acid In Vivo and the Involvement of TXNIP in HSP90 Cleavage

  • Sangkyu Park;Dongbum Kim;Haiyoung Jung;In Pyo Choi;Hyung-Joo Kwon;Younghee Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.115-122
    • /
    • 2024
  • Heat shock protein (HSP) 90 is expressed in most living organisms, and several client proteins of HSP90 are necessary for cancer cell survival and growth. Previously, we found that HSP90 was cleaved by histone deacetylase (HDAC) inhibitors and proteasome inhibitors, and the cleavage of HSP90 contributes to their cytotoxicity in K562 leukemia cells. In this study, we first established mouse xenograft models with K562 cells expressing the wild-type or cleavage-resistant mutant HSP90β and found that the suppression of tumor growth by the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was interrupted by the mutation inhibiting the HSP90 cleavage in vivo. Next, we investigated the possible function of thioredoxin interacting protein (TXNIP) in the HSP90 cleavage induced by SAHA. TXNIP is a negative regulator for thioredoxin, an antioxidant protein. SAHA transcriptionally induced the expression of TXNIP in K562 cells. HSP90 cleavage was induced by SAHA also in the thymocytes of normal mice and suppressed by an anti-oxidant and pan-caspase inhibitor. When the thymocytes from the TXNIP knockout mice and their wild-type littermate control mice were treated with SAHA, the HSP90 cleavage was detected in the thymocytes of the littermate controls but suppressed in those of the TXNIP knockout mice suggesting the requirement of TXNIP for HSP90 cleavage. We additionally found that HSP90 cleavage was induced by actinomycin D, β-mercaptoethanol, and p38 MAPK inhibitor PD169316 suggesting its prevalence. Taken together, we suggest that HSP90 cleavage occurs also in vivo and contributes to the anti-cancer activity of various drugs in a TXNIP-dependent manner.

Anti-Proliferative Effects of Dendrophthoe pentandra Methanol Extract on BCR/ABL-Positive and Imatinib-Resistant Leukemia Cell Lines

  • Zamani, Afiqah;Jusoh, Siti Asmaa Mat;Al-Jamal, Hamid Ali Nagi;Sul'ain, Mohd Dasuki;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4857-4861
    • /
    • 2016
  • Background: Imatinib mesylate, a tyrosine kinase inhibitor specifically targeting the BCR/ABL fusion protein, induces hematological remission in patients with chronic myeloid leukemia (CML). However, the majority of CML patients treated with imatinib develop resistance with prolonged therapy. Dendrophthoe pentandra (L.) Miq. is a Malaysian mistletoe species that has been used as a traditional treatment for several ailments such as smallpox, ulcers, and cancers. Methods: We developed a resistant cell line (designated as K562R) by long-term co-culture of a BCR/ABL positive CML cell line, K562, with imatinib mesylate. We then investigated the anti-proliferative effects of D. pentandra methanol extract on parental K562 and resistant K562R cells. Trypan blue exclusion assays were performed to determine the IC50 concentration; apoptosis and cell cycle analysis were conducted by flow cytometry. Results: D. pentandra extract had greater anti-proliferative effects towards K562R ($IC50=192{\mu}g/mL$) compared to K562 ($500{\mu}g/mL$) cells. Upon treatment with D. pentandra extract at the IC50. concentration: K562 but not K562R demonstrated increase in apoptosis and cell cycle arrest in the G2/M phase. Conclusion: D. pentandra methanol extract exerts potent anti-proliferative effect on BCR/ABL positive K562 cells.

Radiation-induced Apoptosis is Differentially Modulated by PTK Inhibitors in K562 Cells (K562 백혈병 세포주에서 방사선에 의해 유도되는 Apoptosis에 미치는 PTK Inhibitors의 영향)

  • Lee Hyung Sik;Moon Chang Woo;Hur Won Joo;Jeong Su Jin;Jeong Min Ho;Lee Jeong Hyeon;Lim Young kin;Park Heon Joo
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.51-58
    • /
    • 2000
  • Purpose :The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive KS62 leukemia cell line was investigated. Materials and Methods :K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2×106 cells/mL. The cells were irradiated with 10 Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37$^{\circ}C$ for 0$\~$48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bel-2, bel-X$_{L}$ and bax protein levels. Results :Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electro-phoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bel-2 or bel-X$_{L}$ anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30$\~$40$\%$ at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. Conclusion : We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210$^{bcr/abl}$ failed to enhance the radiation induced apoptosis in KS62 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is attributable to bel-2 family. It is plausible that the relationship between cell cycle delays and cell death is essential for drug development based on molecular targeting designed to modify radiation-induced apoptosis.

  • PDF

Selective miRNA Expression Profile in Chronic Myeloid Leukemia K562 Cell-derived Exosomes

  • Feng, Dan-Qin;Huang, Bo;Li, Jing;Liu, Jing;Chen, Xi-Min;Xu, Yan-Mei;Chen, Xin;Zhang, Hai-Bin;Hu, Long-Hua;Wang, Xiao-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7501-7508
    • /
    • 2013
  • Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder of hematopoietic stem cell scarrying the Philadelphia (Ph) chromosome and an oncogenic BCR-ABL1 fusion gene. The tyrosine kinase inhibitor (TKI) of BCR-ABL1 kinase is a treatment of choice for control of CML. Objective: Recent studies have demonstrated that miRNAs within exosomes from cancer cells play crucial roles in initiation and progression. This study was performed to assess miRNAs within exosomes of K562 cells. Methods: miRNA microarray analysis of K562 cells and K562 cell-derived exosomes was conducted with the 6th generation miRCURYTM LNA Array (v.16.0). Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also carried out. GO terms and signaling pathways were categorized into 66 classes (including homophilic cell adhesion, negative regulation of apoptotic process, cell adhesion) and 26 signaling pathways (such as Wnt). Results: In exosomes, 49 miRNAs were up regulated as compared to K562 cells, and two of them were further confirmed by quantitative real-time PCR. There are differentially expressed miRNAs between K562 cell derived-exosomes and K562 cells. Conclusion: Selectively expressed miRNAs in exosomes may promote the development of CML via effects on interactions (e.g. adhesion) of CML cells with their microenvironment.