• Title/Summary/Keyword: inherent variability

Search Result 61, Processing Time 0.028 seconds

Spatial Variability of Hydraulic Properties in a Multi-Layered Soils of Japanese Larch (Larix leptolepis) Stand (낙엽송림분의 다층구조 토광에 있어서 수리특성의 공간 변리)

  • Chung Doug Young;Jin Hyun O
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 1999
  • Soil structure and organic matter have been known to strongly affect water flow and solute transport, yet little information is available concerning soil hydraulic properties related to soil physical and chemical properties in the forest site. The purpose of this study was to quantify the spatial variability and spatial correlation of the measured parameter values from the plots established with the rainfall simulator on Japanese larch(Larix leptolepis) dominated site in Kwangju. Kyunggi-Do. Measurement of soil water flux and retention were made with the inherent soil texture, soil structure, and organic matter. The method was based on the observation that when water was applied at a constant rate to the soil surface on each plot. The method was simple to apply and consists of following steps: (i) Wet the soil from a rainfall simulator with several known discharge rates on a relatively leveled soil surface with and without organic matter. (ii) Once the borders of the ponded zone were steady, saturated hydraulic conductivity( $K_{s}$) and the matric flux function(F) was evaluated from a regression of flux vs. the reciprocal of the ponded area. A conductivity of the form $K_{i+}$$_1$ $_{c}$= $K_{i}$( $_{c}$) [1-d /dz] where flux continuity implies. For this, continuity of matric potential at the interface at all times are as follows: $_1$( $Z_{c}$) = $_2$( $Z_{c}$) = $_{c}$ for steady state intake from water ponded on the soil surface. Results of this investigation showed the importance of understanding spatial variability in wide differences of water retention and saturated hydraulic conductivity with respect to pore geometry and organic matter contents which influenced the water flux throughout the soil profile.l profile.ile.

  • PDF

TRIZ Analysis to Bullwhip Effect and a Survey on Studies (채찍효과에 대한 트리즈 분석과 연구현황 고찰)

  • Song, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.109-117
    • /
    • 2016
  • Recently, corporate environment is faced with uncertainty that did not suffer in the past. In addition, as the supply chain was expanded and lengthened, the flow of information and material was complicated. Increase in complexity which amplifies the variability of the individual steps in supply chains further adds to the uncertainty. The bullwhip effect that refers the phenomenon where order variability increases as the orders move upstream in the supply chain became serious. The bullwhip effect is more and more important especially for the enterprise in the supply chain. So, there are many studies now since it was observed about 100 years ago. The aim of this paper is to analyze how to solve the bullwhip effect by using TRIZ (Teoriya Resheniya Izobretatelskikh Zadach). TRIZ is one of the most famous tools for creative solving that applied in many fields ranging from management as well as engineering. Among problems, the dilemma needs creative solutions that require handling the contradictions inherent in that. Among various kinds of problem solving techniques, TRIZ provides the concept of physical contradiction as a common problem solving principle. This study provides a simple process of solving problem explains a case of solving problem in the management field and shows the availability of theory in the inventory control. In accordance with the proposed solving process, the paper analyzes the bullwhip effect by applying the TRIZ tools and then identifies the solution directions. Next, the current studies are classified by the above analysis and important managerial concepts are proposed. Lastly, directions for future research on this area are suggested.

Total sizing system (총 사이징 시스템)

  • Proverb, Robert J.;Pawlowska, Lucyna;Komarowska, Kasia;Garro, Gina;Dilts, Kimberly
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.07a
    • /
    • pp.19-42
    • /
    • 2004
  • Sizing properties in paper are generally developed through the application of both internal and surface sizes. Rosin, wax, and synthetic sizes including ASA, AKD, and stearic anhydride are and have been used to provide wet-end sizing to paper. In many cases, the use of some of these sizes leads to runnability problems that are inherent in the wet-end operation. Variability in furnish, fines, broke, filler, water chemistry, conductivity, and pH control impacts the wet-end operation. Size press chemicals including starch and polymers such as styrene-acrylic, styrene-maleic, and styrene acrylate emulsions are used in conjunction with internal sizes to improve the paper surface for printing and strength properties, porosity, and opacity improvement. This paper will discuss results from a new, proprietary formulation and process that allows application of sizing chemistry more totally at the size press with reduced emphasis on wet end sizing. Runnability issues are thus minimized at the wet-end, chemical usage is more efficient, and significant cost savings can be realized. Case histories will be presented illustrating the advantages of this new application in commercial trials.

  • PDF

A Brief Introduction to Marine Ecosystem Modeling (해양 생태모델링 고찰)

  • Kim, Hae-Cheol;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.21-31
    • /
    • 2013
  • Ecosystem models are mathematical representations of underlying mechanistic relationships among ecological components and processes. Ecosystem modeling is a useful tool to visualize inherent complexities of ecological relationships among components and the characteristic variability in ecological systems, and to quantitatively predict effects of modification of systems due to human activities and/or climate change. A number of interdisciplinary programs in recent 20 to 30 years motivated oceanographic communities to explore and employ systematic and holistic approaches, and as an outcome of these efforts, synthesis and modeling became a popular and important way of integrating lessons learned from many on-going projects. This is a brief review that includes: background information of ecosystem dynamics model; what needs to be considered in building a model framework; biologically-physically coupled processes; end-to-end modeling efforts; and parameterization and related issues.

A Study on Expression Characteristics of Flexibility in Nomadic Space (노마드적 공간에서 나타나는 유연성에 관한 연구)

  • Yun, Ju-Hee;Kim, Kai-Chun
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.3
    • /
    • pp.119-126
    • /
    • 2011
  • Recently, in the fields of fashion, advertisement, film, literature, philosophy, etc., the word, 'Nomad', is being used frequently across the overall society. The contemporary society is actively incorporating "nomadic thinking" as a new social phenomenon across the boundaries of conventional fields. This is not an exception in the field of space design. This study, via the contemporary nomadic thinking, examined the relationship between space design's application possibility as a new trend and flexible space; then categorized the characteristics of flexible space into flexibility, temporariness, changeability, and correlation; and then analyzed expression characteristics of flexible space. As for unrestricted expression of scene, it was recognized that separation of scene and space leads space to meet the needs of surrounding environment and users; formation of changeable space enables uses of space from various perspectives; and combining external factors (energy, media technologies) with space leads space to self-evolution. Space is perceived as an living organism that is flexibly corresponding, via realistic movement and virtual movement, to the indefinite, diversified thinking of the contemporary society. Therefore, this study illuminates that nomadic thinking has significance as basic thinking to predict development and characteristics of design thinking through understanding the contemporary society with the basic thinking system that has been inherent without restrictions of being fixed to the present, past, and future.

Uncertainty of Agricultural product Prices by Information Entropy Model using Probability Distribution for Monthly Prices (월별 가격의 확률분포를 이용한 정보엔트로피 모델에 의한 농산물가격의 불확정성)

  • Eun, Sang-Kyu;Jung, Nam-Su;Lee, Jeong-Jae;Bae, Yeong-Joung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.7-14
    • /
    • 2012
  • To analyze any given situation, it is necessary to have information on elements which affect the situation. Particularly, there is greater variability in both frequency and magnitude of agricultural product prices as they are affected by various unpredictable factors such as weather conditions etc. This is the reason why it is difficult for the farmers to maintain their stable income through agricultural production and marketing. In this research, attempts are made to quantify the entropy of various situations inherent in the price changes so that the stability of farmers' income can be increased. Through this research, we developed an entropy model which can quantify the uncertainties of price changes using the probability distribution of price changes. The model was tested for its significance by comparing its simulation outcomes with actual ranges and standard deviations of price variations of the past using monthly agricultural product prices data. We confirmed that the simulation results reflected the features of the ranges and standard deviations of actual price variations. Also, it is possible for us to predict standard deviations for changed prices which will occur after a certain time using the information entropy obtained from relevant agricultural product price data before the time.

Probabilistic Analysis of the Stability of Soil Slopes (사면안정의 확률론적 해석)

  • Kim, Young Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.85-90
    • /
    • 1988
  • A probabilistic model for the failure in a homogeneous soil slope is presented. The Safety of the slope is measured through its probability of failure rather than the customary factor of safety. The safety margin of slope failure is assumed to follow a normal distribution. Sources of uncertainties affecting characterization of soil property in a homogeneous soil layer include inherent spatial variability., estimation error from insufficient samples, and measurement errors. Uncertainties of the shear strength-along potential failure surface are expressed by one-dimensional random field models. The rupture surface, created at toe of a soil slope, has been considered to propagate towards the boundary along a path following an exponential (log-spiral) law. Having derived the statistical characteristics of the rupture surface and of the forces which act along it, the probability of failure of the slope was found. Finally the developed procedure has been applied in a case study to yield the reliability of a soil slope.

  • PDF

Affecting Factors on the Variation of Atmospheric Concentration of Polycyclic Aromatic Hydrocarbons in Central London

  • Baek, Sung-Ok;Roger Perry
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.343-356
    • /
    • 1994
  • In this study, a statistical investigation was carried out for the evaluation of any relationship between polycyclic aromatic hydrocarbons (PAHss) associated with ambient aerosols and other air quality parameters under varying meteorological conditions. Daily measurements for PAHs and air quality/meteorological parameters were selected from a data-base constructed by a comprehensive air monitoring in London during 1985-1987. Correlation coefficients were calculated to examine any significant relationship between the PAHs and other individual variables. Statistical analysis was further Performed for the air quality/meteorological data set using a principal component analysis to derive important factors inherent in the interactions among the variables. A total of six components were identified, representing vehicle emission, photochemical activity/volatilization, space heating, atmospheric humidity, atmospheric stability, and wet deposition. It was found from a stepwise multiple regression analysis that the vehicle emission component is overall the most important factor contributing to the variability of PAHs concentrations at the monitoring site. The photochemical activity/volatilzation component appeared to be also an important factor particularly for the lower molecular weight PAHs. In general, the space heating component was found to be next important factor, while the contributions of other three components to the variance of each PAHs did not appear to be as much important as the first three components in most cases. However, a consistency for these components in their negative correlations with PAHs data was found, indicating their roles in the depletion of PAHs concentrations in the urban atmosphere.

  • PDF

Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings (지상원격탐사를 이용한 에어러솔 간접효과 연구)

  • Kim Byung-Gon;Kwon Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.235-247
    • /
    • 2006
  • Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.

An Effective Visualization of Intricate Multi-Event Situations by Reusing Primitive Motions and Actions

  • Park, Jong Hee;Choi, Jun Seong
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.16-26
    • /
    • 2019
  • The efficient implementation of various physical actions of agents to respond to dynamically changing situations is essential for the simulation of realistic agents and activities in a cyber world. To achieve a maximum diversity of actions and immediate responsiveness to abrupt changes in situations, we have developed an animation technique in which complex actions are recursively constructed by reusing a set of primitive motions, and agents are designed to react in real-time to abrupt ambient changes by computationally satisfying kinematic constraints on body parts with respect to their goals. Our reusing scheme is extended to visualize the procedure of realistic intricate situations involving many concurring events. Our approach based on motion reuse and recursive assembly has clear advantages in motion variability and action diversity with respect to authoring scalability and motion responsiveness compared to conventional monolithic (static) animation techniques. This diversity also serves to accommodate the characteristic unpredictability of events concurring in a situation due to inherent non-determinism of associated conditions. To demonstrate the viability of our approach, we implement several composite and parallel actions in a dynamically changing example situation involving events that were originally independent until coincidentally inter-coupled therein.