• Title/Summary/Keyword: inherent safety

Search Result 265, Processing Time 0.018 seconds

Effective Demand Selection Scheme for Satisfying Target Service Level in a Supply Chain (공급망의 목표 서비스 수준 만족을 위한 효과적인 수요선택 방안)

  • Park, Gi-Tae;Kwon, Ick-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.205-211
    • /
    • 2009
  • In reality, distribution planning for a supply chain is established using a certain probabilistic distribution estimated by forecasting. However, in general, the demands used for an actual distribution planning are of deterministic value, a single value for each of periods. Because of this reason the final result of a planning has to be a single value for each period. Unfortunately, it is very difficult to estimate a single value due to the inherent uncertainty in the probabilistic distribution of customer demand. The issue addressed in this paper is the selection of single demand value among of the distributed demand estimations for a period to be used in the distribution planning. This paper proposes an efficient demand selection scheme for minimizing total inventory costs while satisfying target service level under the various experimental conditions.

Distribution Planning for a Distributed Multi-echelon Supply Chain under Service Level Constraint (서비스 수준 제약하의 다단계 분배형 공급망에 대한 분배계획)

  • Park, Gi-Tae;Kwon, Ick-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.139-148
    • /
    • 2009
  • In a real-life supply chain environment, demand forecasting is usually represented by probabilistic distributions due to the uncertainty inherent in customer demands. However, the customer demand used for an actual supply chain planning is a single deterministic value for each of periods. In this paper we study the choice of single demand value among of the given customer demand distribution for a period to be used in the supply chain planning. This paper considers distributed multi-echelon supply chain and the objective function of this paper is to minimize the total costs, that is the sum of holding and backorder costs over the distribution network under the service level constraint, by using demand selection scheme. Some useful findings are derived from various simulation-based experiments.

An Experimental Study on the Impact Collapse Characteristics of CFRP Composite Circular Structures (탄소섬유강화 복합재료 원통부재의 충격압궤특성에 관한 실험적 연구)

  • 김영남;양현수
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.1
    • /
    • pp.127-137
    • /
    • 2001
  • Because of the inherent flexibility in their design for improved material properties, composites have wide applications in aerospace vehicles and automobiles. The purpose of this study is to investigate the energy absorption characteristics of CFRf (Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine) and impact compression tests have been carried out using the vertical crushing testing machine. When such tubes were subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that control the crushing process. The collapse characteristics and energy absorption were examined. Trigger and interlaminar number affect the energy absorption capability of CFRP tubes.

  • PDF

A Study on Risk Evaluation and Classification of Fire Equipments for Certification (소방용품의 강제인증을 위한 위험도평가 및 품목분류에 관한 연구)

  • Choi, Gi-Heung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.7-12
    • /
    • 2009
  • This study focuses on the classification of fire equipments for certification based on the risk evaluation. In general, known statistics on fire equipment-related accidents needs to be used for risk evaluation. When statistics is not available, however, expected frequency and severity of accident for individual equipment can be taken into account in evaluating the related risks. Based on the level of inherent risks, each equipment is then classified into three categories for certification. For equipments that risk evaluation is not possible, characteristics of those products such as reliability are considered for classification. Once classified, each equipment is assigned an appropriate certification module.

Stochastic design charts for bearing capacity of strip footings

  • Shahin, Mohamed A.;Cheung, Eric M.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.153-167
    • /
    • 2011
  • Traditional design methods of bearing capacity of shallow foundations are deterministic in the sense that they do not explicitly consider the inherent uncertainty associated with the factors affecting bearing capacity. To account for such uncertainty, available deterministic methods rather employ a fixed global factor of safety that may lead to inappropriate bearing capacity predictions. An alternative stochastic approach is essential to provide a more rational estimation of bearing capacity. In this paper, the likely distribution of predicted bearing capacity of strip footings subjected to vertical loads is obtained using a stochastic approach based on the Monte Carlo simulation. The approach accounts for the uncertainty associated with the soil shear strength parameters: cohesion, c, and friction angle, ${\phi}$, and the cross correlation between c and ${\phi}$. A set of stochastic design charts that assure target reliability levels of 90% and 95%, are developed for routine use by practitioners. The charts negate the need for a factor of safety and provide a more reliable indication of what the actual bearing capacity might be.

Enhancement of Signal-to-noise Ratio Based on Multiplication Function for Phi-OTDR

  • Li, Meng;Xiong, Xinglong;Zhao, Yifei;Ma, Yuzhao
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.413-421
    • /
    • 2018
  • We propose a novel methodology based on the multiplication function to improve the signal-to-noise ratio (SNR) for vibration detection in a phi optical time-domain reflectometer system (phi-OTDR). The extreme-mean complementary empirical mode decomposition (ECEMD) is designed to break down the original signal into a set of inherent mode functions (IMFs). The multiplication function in terms of selected IMFs is used to determine a vibration's position. By this method, the SNR of a phi-OTDR system is enhanced by several orders of magnitude. Simulations and experiments applying the method to real data prove the validity of the proposed approach.

Discretization technique for stability analysis of complex slopes

  • Hou, Chaoqun;Zhang, Tingting;Sun, Zhibin;Dias, Daniel;Li, Jianfei
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.227-236
    • /
    • 2019
  • In practice, the natural slopes are frequently with soils of spatial properties and irregular features. The traditional limit analysis method meets an inherent difficulty to deal with the stability problem for such slopes due to the normal condition in the associated flow rule. To overcome the problem, a novel technique based on the upper bound limit analysis, which is called the discretization technique, is employed for the stability evaluation of complex slopes. In this paper, the discretization mechanism for complex slopes was presented, and the safety factors of several examples were calculated. The good agreement between the discretization-based and previous results shows the accuracy of the proposed mechanism, proving that it can be an alternative and reliable approach for complex slope stability analysis.

Experimental measurement of stiffness coefficient of high-temperature graphite pebble fuel elements in helium at high temperatures

  • Minghao Si;Nan Gui;Yanfei Sun;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1679-1686
    • /
    • 2024
  • Graphite material plays an important role in nuclear reactors especially the high-temperature gas-cooled reactors (HTGRs) by its outstanding comprehensive nuclear properties. The structural integrity of graphite pebble fuel elements is the first barrier to core safety under any circumstances. The correct knowledge of the stiffness coefficient of the graphite pebble fuel element inside the reactor's core is significant to ensure the valid design and inherent safety. In this research, a vertical extrusion device was set up to measure the stiffness coefficient of the graphite pebble fuel element by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. The stiffness coefficient equations of graphite pebble fuel elements at different temperatures are given (in a helium atmosphere). The result first provides the data on the high-temperature stiffness coefficient of pebbles in helium gas. The result will be helpful for the engineering safety analysis of pebble-bed nuclear reactors.

A Preliminary Safety Analysis for the Prototype Gen IV Sodium-Cooled Fast Reactor

  • Lee, Kwi Lim;Ha, Kwi-Seok;Jeong, Jae-Ho;Choi, Chi-Woong;Jeong, Taekyeong;Ahn, Sang June;Lee, Seung Won;Chang, Won-Pyo;Kang, Seok Hun;Yoo, Jaewoon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1071-1082
    • /
    • 2016
  • Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the invessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents.

Reorganization of Disaster Management Systems for Effective Emergency and Disaster Response: The Pivotal Role of The National Emergency Management Agency (NEMA) (대형 재난의 효율적 대응을 위한 소방조직 중심의 재난대응체계 개편 방안)

  • Mun, Gi-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The current study aims to propose a reorganization plan for the national emergency management system to improve the current organizational structure for responding to national disasters and emergency situations. As a theoretical framework, the current study identified four key elements of successful disaster response systems: responsiveness, controllability, expertise, and devotedness. On the basis of the four key elements of disaster response systems, this study critically reviewed the current state of the organizational structure of the Korean national emergency response system by discussing the issues inherent in the current structure and by doing a comparative analysis of two high-profile national disaster cases-the Sewol ferry disaster in 2014 and the Gwangsan Rescue of buried people in 2013. Then, this study proposed the reorganization plan for the national disaster response system in which the NEMA is under direct control of the Prime Minister of Korea. It coordinates and controls the related government departments, such as the police, maritime police, and military during the national disaster and emergency situation. This study also proposed a reorganizational plan for the regional disaster response system in Korea. Finally, it was suggested that the status of firefighters should be elevated to the national public servant level in order to achieve organizational efficiency and solve existing problems that come from the current separated systems.