• 제목/요약/키워드: inherent safety

검색결과 265건 처리시간 0.023초

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.

Specific Process Conditions for Non-Hazardous Classification of Hydrogen Handling Facilities

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Safety and Health at Work
    • /
    • 제12권3호
    • /
    • pp.416-420
    • /
    • 2021
  • Hazardous area classification design is required to reduce the explosion risk in process plants. Among the international design guidelines, only IEC 60079-10-1 proposes a new type of zone, namely zone 2 NE, to prevent explosion hazards. We studied how to meet the zone 2 NE grade for a facility handling hydrogen gas, which is considered as most dangerous among explosive gases. Zone 2 NE can be achieved considering the grade of release, as well as the availability and effectiveness of ventilation, which are factors indicative of the facility condition and its surroundings. In the present study, we demonstrate that zone 2 NE can be achieved when the degree of ventilation is high by accessing temperature, pressure, and size of leak hole. The release characteristic can be derived by substituting the process condition of the hydrogen gas facility. The equations are summarized considering relation of the operating temperature, operating pressure, and size of leak hole. Through this relationship, the non-hazardous condition can be realized from the perspective of inherent safety by the combination of each parameter before the initial design of the hydrogen gas facility.

본질적인 안전 설계를 고려한 공정 설비의 배치에 관한 연구 (Study on the Layout of Process Facilities considering Inherent Safety Design)

  • 김영훈;소원;윤인섭
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2010년도 추계학술대회
    • /
    • pp.245-256
    • /
    • 2010
  • 최근 들어 안전관리의 패러다임은 사후분석에서 사전예방으로 바뀌고 있다. 이러한 추세에 맞추어 본질적인 안전관리에 대한 관심이 늘어나고 있다. 공정에 본질적인 안전을 추구하는 방법은 크게 5가지로 나누어 질 수 있으며, 공정의 배치를 통해서 사고를 영향을 최소화하는 방법은 공정의 설계단계에서 적용할 수 있는 좋은 방법이다. 본 연구에서는 공정의 설비가 가지는 위험성을 기반으로 안전거리에 대한 지침을 제시하고 있다. 사고결과와 사고발생빈도를 기반으로 개인적 위험성(Individual Risk: IR)을 계산하였으며, 계산된 값을 기반으로 최적의 안전거리 계산을 수행할 수 있었다. 계산된 IR과 문헌에서 제시된 안전거리를 바탕으로 작업자가 거주하는 건물과 공정경계 까지의 적절한 거리와 설비간의 최적의 거리를 계산하게 된다. Mixed Integer Linear Programming(MILP)를 이용하여 각각설비의 안전거리가 확보된 시설물 배치와 최소 부지 면적 등을 알 수가 있다. 이 연구를 통해 최적화된 부지면적과 파이프라인의 시설물 배치는 물론 공정건설이나 초기 디자인 단계 및 안전성확보측면에서 본질적인 안전을 구현하는데 유용하게 적용될 수 있다.

  • PDF

Reliability considerations in bridge pier scouring

  • Muzzammil, M.;Siddiqui, N.A.;Siddiqui, A.F.
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.1-18
    • /
    • 2008
  • The conventional design of bridge piers against scour uses scour equations which involve number of uncertain flow, sediments and structural parameters. The inherent high uncertainties in these parameters suggest that the reliability of piers must be assessed to ensure desirable safety of bridges against scour. In the present study, a procedure for the reliability assessment of bridge piers, installed in main and flood channels, against scour has been presented. To study the influence of various random variables on piers' reliability sensitivity analysis has been carried out. To incorporate the reliability in the evaluation of safety factor, a simplified relationship between safety factor and reliability index has been proposed. Effects of clear water (flood channel) and live bed scour (main channel) are highlighted on pier reliability. In addition to these, an attempt has also been made to explain the failure of Black mount bridge of New Zealand based on its pier's reliability analysis. Some parametric studies have also been included to obtain the results of practical interest.

Reliability-based design of prestressed concrete girders in integral Abutment Bridges for thermal effects

  • Kim, WooSeok;Laman, Jeffrey A.;Park, Jong Yil
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.305-322
    • /
    • 2014
  • Reliability-based design limit states and associated partial load factors provide a consistent level of design safety across bridge types and members. However, limit states in the current AASHTO LRFD have not been developed explicitly for the situation encountered by integral abutment bridges (IABs) that have unique boundary conditions and loads with inherent uncertainties. Therefore, new reliability-based limit states for IABs considering the variability of the abutment support conditions and thermal loading must be developed to achieve IAB designs that achieve the same safety level as other bridge designs. Prestressed concrete girder bridges are considered in this study and are subjected to concrete time-dependent effects (creep and shrinkage), backfill pressure, temperature fluctuation and temperature gradient. Based on the previously established database for bridge loads and resistances, reliability analyses are performed. The IAB limit states proposed herein are intended to supplement current AASHTO LRFD limit states as specified in AASHTO LRFD Table 3.4.1-1.

Reactivity Feedback Models for Safety Performance of Metal Core

  • Han, Chi-Young;Kim, Jong-Kyung;Dohee Hahn
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.542-547
    • /
    • 1997
  • In the SSC(Super System Code), the reactivity feedback models of the Doppler effect and fuel axial expansion were modified to evaluate the safety performance of the metal-fueled core. The core radial expansion model was developed and implemented into the code as well. The transient analyses have been performed by the modified SSC for UTOP, ULOHS, ULOF/LOHS, and UTOP/LOF/LOHS events for one of the core design options being considered. Analysis results shows that the reactivity feedbacks can provide an inherent shutdown capability in response to key anticipated events without scram. Development of other reactivity feedback models and validation of these models against experimental data would make the SSC suitable for the assessment of the metal-fueled core safety performance.

  • PDF

COB형 LED 보안등을 위한 렌즈 구조 설계 (Design of the Lens Structure for COB type LED Safety Luminaires)

  • 장성환;정병조
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.1-8
    • /
    • 2013
  • The study carried out in this dissertation focuses on the lens structure design and the light distribution for LED safety luminaires using COB type LED module. Lens structures for LED lights has been designed 1) to induce light diffusion by dual process of internal reflection and refraction, 2) to minimize the inherent LED lights' glittering, and 3) to have uniform brightness. The lens designed with the proposed structures function as diffusers for the divergence of the LED lights so that they form a wide angle of view and adjust the light distribution. We designed of lens with stable uniformity factor and average roughness using aspheric optics property. Finally we made the analysis data of the simulated data.

철도건널목 지능화시스템 시범 구축 (Pilot Implementation of Intelligence System for Accident Prevention at Railway Level Crossing)

  • 조봉관;류상환;황현철;정재일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1112-1117
    • /
    • 2010
  • The intelligent safety system for level crossing which employs information and communication technology has been developed in USA and Japan, etc. But, in Korea, the relevant research has not been performed. In this paper, we analyze the cause of railway level crossing accidents and the inherent problem of the existing safety equipments. Based on analyzed results, we design the intelligent safety system which prevent collision between a train and a vehicle. This system displays train approaching information in real-time at roadside warning devices, informs approaching train of the detected obstacle in crossing areas, and is interconnected with traffic signal to empty the crossing area before train comes. Especially, we present the video based obstacle detection algorithm and verify its performance with prototype H/W since the abrupt obstacles in crossing areas are the main cause of level crossing accidents. We identify that the presented scheme detects both pedestrian and vehicle with good performance. Currently, we demonstrate developed railway crossing intelligence system at one crossing of Young-dong-seon line of Korail with Sea Train cockpit.

  • PDF

국내 저압지중함의 현장실태조사 (A research on the actual condition of the underground manhole in domestic)

  • 김한상;김종민;배석명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 전기설비
    • /
    • pp.91-92
    • /
    • 2006
  • The increased use of underground power distribution as opposed to overhead lines contributes to the aesthetics of the downtown areas. But there is an inherent risk of accidental electrocution should there be damage to the insulation of the cable because of heavy rain. Should a pedestrian make contact with this cable indirectly, via a man hole cover, electrocution could result. In this paper, we analyse weaknesses in this low-voltage manhole and propose improvements.

  • PDF

Multivariate analysis of critical parameters influencing the reliability of thermal-hydraulic passive safety system

  • Olatubosun, Samuel Abiodun;Zhang, Zhijian
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.45-53
    • /
    • 2019
  • Thermal-hydraulic passive safety systems (PSSs) are incorporated into many advanced reactor designs on the bases of simplicity, economics and inherent safety nature. Several factors among which are the critical parameters (CPs) that influence failure and reliability of thermal-hydraulic (t-h) passive systems are now being explored. For simplicity, it is assumed in most reliability analyses that the CPs are independent whereas in practice this assumption is not always valid. There is need to critically examine the dependency influence of the CPs on reliability of the t-h passive systems at design stage and in operation to guarantee safety/better performance. In this paper, two multivariate analysis methods (covariance and conditional subjective probability density function) were presented and applied to a simple PSS. The methods followed a generalized procedure for evaluating t-h reliability based on dependency consideration. A passively water-cooled steam generator was used to demonstrate the dependency of the identified key CPs using the methods. The results obtained from the methods are in agreement and justified the need to consider the dependency of CPs in t-h reliability. For dependable t-h reliability, it is advisable to adopt all possible CPs and apply suitable multivariate method in dependency consideration of CPs among other factors.