• 제목/요약/키워드: infrared space telescope

검색결과 177건 처리시간 0.025초

SYSTEM TRADE-OFF STUDY AND OPTO-THERMO-MECHANICAL ANALYSIS OF A SUNSHIELD ON THE MSC OF THE KOMPSAT-2

  • Kim, Young-Soo;Lee, Eung-Shik;Woo, Sun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권4호
    • /
    • pp.393-402
    • /
    • 2003
  • The Multi-Spectral Camera (MSC) is the payload of KOMPSAT-2 which is designed for earth imaging in optical and near-infrared region on a sun-synchronous orbit. The telescope in the MSC is a Ritchey-Chretien type with large aperture. The telescope structure should be well stabilized and the optical alignment should be kept steady so that best images can be achieved. However, the MSC is exposed to adverse thermal environment on the orbit which can give impacts on optical performance. Solar incidence can bring non-uniform temperature rise on the telescope tube which entails unfavorable thermal distortion. Three ways of preventing the solar radiation were proposed, which were installing external mechanical shield, internal shield, and maneuvering the spacecraft. After trade-off study, internal sun shield was selected as a practical and optimal solution to minimize the effect of the solar radiation. In addition, detailed designs of the structure and sunshield were produced and analyses have been performed. The results were assessed to verify their impacts to the image quality. It was confirmed that the internal sunshield complies with the requirements and would improve image quality.

NEAR-INFRARED HIGH-RESOLUTION SPECTROSCOPY OF THE OBSCURED AGN IRAS 01250+2832

  • Shirahata, M.;Usuda, T.;Oyabu, S.;Nakagawa, T.;Yamamura, I.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.295-296
    • /
    • 2012
  • We provide a new physical insight on the hot molecular clouds near the nucleus of the heavily obscured AGN IRAS 01250+2832, based on the results of near-infrared high-resolution spectroscopy of gaseous CO ro-vibrational absorption lines with Subaru/IRCS. The detected CO absorption lines up to highly excited rotational levels reveal that hot dense molecular clouds exist around the AGN under the peculiar physical conditions.

1.6 M SOLAR TELESCOPE IN BIG BEAR - THE NST

  • GOODE PHILIP R.;DENKER CARSTEN.J.;DIDKOVSKY LEONID I.;KUHN J. R.;WANG HAIMIN
    • 천문학회지
    • /
    • 제36권spc1호
    • /
    • pp.125-133
    • /
    • 2003
  • New Jersey Institute of Technology (NJIT), in collaboration with the University of Hawaii (UH), is upgrading Big Bear Solar Observatory (BBSO) by replacing its principal, 65 cm aperture telescope with a modern, off-axis 1.6 m clear aperture instrument from a 1.7 m blank. The new telescope offers a significant incremental improvement in ground-based infrared and high angular resolution capabilities, and enhances our continuing program to understand photospheric magneto-convection and chromospheric dynamics. These are the drivers for what is broadly called space weather - an important problem, which impacts human technologies and life on earth. This New Solar Telescope (NST) will use the existing BBSO pedestal, pier and observatory building, which will be modified to accept the larger open telescope structure. It will be operated together with our 10 inch (for larger field-of-view vector magnetograms, Ca II K and Ha observations) and Singer-Link (full disk H$\alpha$, Ca II K and white light) synoptic telescopes. The NST optical and software control design will be similar to the existing SOLARC (UH) and the planned Advanced Technology Solar Telescope (ATST) facility led by the National Solar Observatory (NSO) - all three are off-axis designs. The NST will be available to guest observers and will continue BBSO's open data policy. The polishing of the primary will be done in partnership with the University of Arizona Mirror Lab, where their proof-of-concept for figuring 8 m pieces of 20 m nighttime telescopes will be the NST's primary mirror. We plan for the NST's first light in late 2005. This new telescope will be the largest aperture solar telescope, and the largest aperture off-axis telescope, located in one of the best observing sites. It will enable new, cutting edge science. The scientific results will be extremely important to space weather and global climate change research.

MIRIS Science Missions

  • Jeong, Woong-Seob;Matsumoto, Toshio;Seon, Kwang-Il;Lee, Dae-Hee;Ree, Chang-Hee;Park, Young-Sik;Nam, Uk-Won;Pyo, Jeong-Hyun;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Park, Jang-Hyun;Lee, Duk-Hang;Lee, Sung-Ho;Yuk, In-Soo;Ahn, Kyung-Jin;Cho, Jung-Yeon;Lee, Hyung-Mok;Han, Won-Yong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.26.4-27
    • /
    • 2010
  • The main payload of STSAT-3 (Science and Technology Satellite 3), MIRIS (Multipurpose InfraRed Imaging System) is the first Korean infrared space mission to explore the near-infrared sky with a small astronomical instrument, which is being developed by KASI. The 8-cm passively cooled telescope with a wide field of view (3.67 deg. $\times$ 3.67 deg.) will be operated in the wavelength range from 0.9 to $2{\mu}m$. It will carry out wide field imaging and the emission line survey. The main purposes of MIRIS are to perform the Cosmic Infrared Background (CIB) observation at two wide spectral bands (I and H band) and to survey the Galactic plane at $1.88{\mu}m$ wavelength, the Paschen-$\alpha$ emission line. CIB observation enables us to reveal the nature of degreescale CIB fluctuation detected by the IRTS (Infrared Telescope in Space) mission and to measure the absolute CIB level. The Pashen-$\alpha$ emission line survey of Galactic plane helps us to understand the origin of Warm Ionized Medium (WIM) and to find the physical properties of interstellar turbulence related to star formation. Here, we also discuss the observation plan with MIRIS.

  • PDF

The Detailed Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.39.3-40
    • /
    • 2015
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument optimized to the first small satellite of NEXTSat series. The capability of both imaging and low spectral resolution spectroscopy in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the main targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with two linear variable filters is optimized to have a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. The mechanical structure is considered to endure the launching condition as well as the space environment. The dewar inside the telescope is designed to operate the infrared detector at 80K stage. From the thermal analysis, we confirmed that the telescope and the dewar can be cooled down to around 200K and 80K, respectively in order to reduce the large amount of thermal noise. The stray light analysis is shown that a light outside a field of view can be reduced below 1%. After the fabrications of the parts of engineering qualification model (EQM), the NSS EQM was successfully assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. Here, we report the results of the critical design review for the NISS.

  • PDF

MIRIS: Science Programs

  • 정웅섭;;선광일;표정현;이대희;박영식;이창희;문봉곤;박성준;남욱원;박장현;이덕행;차상목;이성호;육인수;안경진;조정연;이형목;한원용
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.97.2-97.2
    • /
    • 2012
  • The main payload of Science and Technology Satellite 3 (STSAT-3), Multipurpose InfraRed Imaging System (MIRIS) is the first Korean infrared space mission to explore the near-infrared sky with a small astronomical instrument developed by KASI. The 8-cm passively cooled telescope with a wide field of view (3.67 deg. ${\times}$ 3.67 deg.) will be operated in the wavelength range from 0.9 to $2{\mu}m$. It will carry out wide-band imaging and the Paschen-${\alpha}$ emission line survey. After the calibration of MIRIS in our laboratory, MIRIS has been delivered to SaTReC and successfully assembled into the STSAT-3. The main purposes of MIRIS are to perform the observation of Cosmic Infrared Background (CIB) at two wide spectral bands (I and H band) and to survey the Galactic plane at $1.88{\mu}m$ wavelength, the Paschen-${\alpha}$ emission line. CIB observation enables us to reveal the nature of degree-scale CIB fluctuation detected by the IRTS (Infrared Telescope in Space) mission and to measure the absolute CIB level. The MIRIS will continuously monitor the seasonal variation of the zodiacal light towards the both north and south ecliptic poles for the purpose of calibration as well as the effective removal of zodiacal light. The Pashen-${\alpha}$ emission line survey of Galactic plane helps us to understand the origin of Warm Ionized Medium (WIM) and to find the physical properties of interstellar turbulence related to star formation. Here, we also discuss the observation plan with MIRIS.

  • PDF

Status Report of GMTNIRS Development

  • 육인수;이성호;천무영;김강민;박찬;박수종;오희영;이상은;이한신;;표태수;박병곤;김영수;경재만
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.61.2-61.2
    • /
    • 2010
  • GMTNIRS (the GMT Near Infrared Spectrograph) is one of the first generation instrument candidates for GMT (Giant Magellan Telescope). Conceptual design studies for nine instruments were proposed last year, and the GMT organization selected 6 instruments including GMTNIRS for the next phase. GMTNIRS will be developed by an international collaboration between KASI and UT(University of Texas). KASI and UT have been also developing IGRINS (the Immersion Grating Infrared Spectrometer) which is a fore-runner instrument of GMTNIRS since 2009. In this talk, we will present the instrument details and development plan, and discuss the science case for GMTNIRS.

  • PDF

IGRINS : 1st Year Operation & Future Plan

  • 이재준;김휘현;황나래;박찬;박병곤
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.43.1-43.1
    • /
    • 2015
  • After successful commissioning observations in 2014, Immersion Grating Infrared Spectrograph (IGRINS) has been conducting its normal scientific operations on the 2.7m Harlan J. Smith telescope at the McDonald Observatory and has been producing high spectral resolution near-infrared spectroscopic data in excellent quality. We will present the current status of the instrument and its software packages, and highlight initial scientific results. In particular, we will discuss possibilities of having IGRINS on larger telescopes.

  • PDF

Dust Disks Around Young Stellar Objects

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.119-126
    • /
    • 2016
  • To reproduce the spectral energy distributions (SEDs) of young stellar objects (YSOs), we perform radiative transfer model calculations for the circumstellar dust disks with various shapes and many dust species. For eight sample objects of T Tauri and Herbig Ae/Be stars, we compare the theoretical model SEDs with the observed SEDs described by the infrared space observatory and Spitzer space telescope spectral data. We use the model, CGPLUS, for a passive irradiated circumstellar dust disk with an inner hole and an inner rim for the eight sample YSOs. We present model parameters for the dust disk, which reproduce the observed SEDs. We find that the model requires a higher mass, luminosity, and temperature for the central star for the Herbig Ae/Be stars than those for the T Tauri stars. Generally, the outer radius, total mass, thickness, and rim height of the theoretical dust disk for the Herbig Ae/Be stars are larger than those for the T Tauri stars.

Progress Report on NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Moon, Bongkon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.49.1-49.1
    • /
    • 2014
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument onboard NEXTSat-1 which is being developed by KASI. The imaging low-resolution spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, star-forming regions and so on will be performed on orbit. After the System Requirement Review, the optical design is changed from on-axis to the off-axis telescope which has a wide field of view (2 deg. ${\times}$ 2 deg.) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. The mechanical structure is considered to endure the launching condition as well as the space environment. The design of relay optics is optimized to maintain the uniform optical performance in the required wavelength range. The stray light analysis is being made to evade a light outside a field of view. The dewar is designed to operate the infrared detector at 80K stage. From the thermal analysis, we confirmed that the telescope can be cooled down to around 200K in order to reduce the large amount of thermal noise. Here, we report the current status of the NISS development.

  • PDF