• Title/Summary/Keyword: infrared photodetectors

Search Result 23, Processing Time 0.032 seconds

Characteristics of InGaAs/GaAs/AlGaAs Double Barrier Quantum Well Infrared Photodetectors

  • Park, Min-Su;Kim, Ho-Seong;Yang, Hyeon-Deok;Song, Jin-Dong;Kim, Sang-Hyeok;Yun, Ye-Seul;Choe, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.324-325
    • /
    • 2014
  • Quantum wells infrared photodetectors (QWIPs) have been used to detect infrared radiations through the principle based on the localized stated in quantum wells (QWs) [1]. The mature III-V compound semiconductor technology used to fabricate these devices results in much lower costs, larger array sizes, higher pixel operability, and better uniformity than those achievable with competing technologies such as HgCdTe. Especially, GaAs/AlGaAs QWIPs have been extensively used for large focal plane arrays (FPAs) of infrared imaging system. However, the research efforts for increasing sensitivity and operating temperature of the QWIPs still have pursued. The modification of heterostructures [2] and the various fabrications for preventing polarization selection rule [3] were suggested. In order to enhance optical performances of the QWIPs, double barrier quantum well (DBQW) structures will be introduced as the absorption layers for the suggested QWIPs. The DBWQ structure is an adequate solution for photodetectors working in the mid-wavelength infrared (MWIR) region and broadens the responsivity spectrum [4]. In this study, InGaAs/GaAs/AlGaAs double barrier quantum well infrared photodetectors (DB-QWIPs) are successfully fabricated and characterized. The heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIPs are grown by molecular beam epitaxy (MBE) system. Photoluminescence (PL) spectroscopy is used to examine the heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIP. The mesa-type DB-QWIPs (Area : $2mm{\times}2mm$) are fabricated by conventional optical lithography and wet etching process and Ni/Ge/Au ohmic contacts were evaporated onto the top and bottom layers. The dark current are measured at different temperatures and the temperature and applied bias dependence of the intersubband photocurrents are studied by using Fourier transform infrared spectrometer (FTIR) system equipped with cryostat. The photovoltaic behavior of the DB-QWIPs can be observed up to 120 K due to the generated built-in electric field caused from the asymmetric heterostructures of the DB-QWIPs. The fabricated DB-QWIPs exhibit spectral photoresponses at wavelengths range from 3 to $7{\mu}m$. Grating structure formed on the window surface of the DB-QWIP will induce the enhancement of optical responses.

  • PDF

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF

Importance of Zinc Oxide Nanoparticle Concentration on the Electrical Properties of Lead Sulfide Quantum Dots-Based Shortwave Infrared Photodetectors (황화납 양자점 기반 단파장 적외선 수광소자의 전기적 특성 향상을 위한 산화아연 나노입자 농도의 중요성)

  • Seo, Kyeong-Ho;Bae, Jin-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.125-130
    • /
    • 2022
  • We describe the importance of zinc oxide nanoparticle (ZnO NP) concentration in the enhancement of electrical properties in a lead sulfide quantum dot (PbS QD)-based shortwave infrared (SWIR) photodetector. ZnO NPs were synthesized using the sol-gel method. The concentration of the ZnO NPs was controlled as 20, 30 and 40 mg/mL in this study. Note that the ZnO NPs layer is commonly used as an electron transport layer in PbS QDs SWIR photodetectors. The photo-to-dark ratio, which is an important parameter of a photodetector, was intensively examined to evaluate the electrical performance. The 20 mg/mL condition of ZnO NPs exhibited the highest photo-to-dark ratio value of 5 at -1 V, compared with 1.8 and 0.4 for 30 mg/mL and 40 mg/mL, respectively. This resulted because the electron mobility decreased when the concentration of ZnO NPs was higher than the optimized value. Based on our results, the concentration of ZnO NPs was observed to play an important role in the electrical performance of the PbS QDs SWIR photodetector.

Anomalous Effect of Hydrogenation on the Optical Characterization $In_{0.5}Ga_{0.5}As$ Quantum Dot Infrared Photodetectors (MBE로 성장된 $In_{0.5}Ga_{0.5}As/GaAs$ 양자점 원적외선 수광소자의 수소화 처리가 광학적 특성에 미치는 특이영향)

  • Lim J.Y.;Song J.D.;Choi W.J.;Cho W.J.;Lee J.I.;Yang H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.223-230
    • /
    • 2006
  • We have investigated the characteristics of hydrogen (H) plasma treated quantum dot infrared photodetectors (QDIPs). The structure used in this study consists of 3 stacked, self assembled $In_{0.5}Ga_{0.5}As/GaAs$ QD layer separated by GaAs barrier layers that were grown by molecular beam epitaxy. Optical characteristics of QDIPs, such as photoluminescence (PL) spectra and photocurrent spectra, have been studied and compared with each other for the as grown and H plasma treated QDIPs. H plasma treatment, resulted in the splitting of PL peak, which can be attributed to the redistribution of the size of QDs. The activation energies estimated from the temperature dependence of integrated PL intensity for as grown and H plasma treated QDIPs are found to be in good agreement with those determined from corresponding peaks of photocurrent spectra. It is also noted that photocurrent is detected up to 130 K for the H plasma treated QDIP, suggesting the future possibility for the development of infrared photodetectors with high temperature operation.

Shortwave Infrared Photodetector based on PbS Quantum Dots for Eye-Safety Lidar Sensors (Eye safety 라이다 센서용 황화납 양자점 기반 SWIR photodetector 개발)

  • Suji Choi;JinBeom Kwon;Yuntae Ha;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.285-289
    • /
    • 2023
  • Recently, the demand for lidar systems for autonomous driving is increasing, and research on Shortwave Infrared(SWIR) photodetectors for this purpose is being actively conducted. Most SWIR photodetectors currently being developed are based on InGaAs, and have the disadvantages of complex processes, high prices, and limitations in research due to monopoly. In addition, current SWIR photodetectors use lasers in the 905 nm wavelength band, which can pass through the pupil and cause damage to the retina. Therefore, it is required to develop a SWIR photodetector using a wavelength band of 1400 nm or more to be safe for human eyes, and to develop a material that can replace the proprietary InGaAs. PbS QDs are group 4-6 compound semiconductors whose absorption wavelength band can be adjusted from 1000 to 2700 nm, and have the advantage of being simple to process. Therefore, in this study, PbS QDs having an absorption wavelength peak of 1415 nm were synthesized, and a SWIR photodetector was fabricated using this. In addition, the photodetector's responsivity was improved by applying P3HT and ZnO NPs to improve electron hole mobility. As a result of the experiment, it was confirmed that the synthesized PbS QDs had excellent FWHM characteristics compared to commercial PbS QDs, and it was confirmed that the photodetector had a maximum current change of about 1.6 times.

Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties (Si 도핑이 InAs 자기조립 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.542-546
    • /
    • 2019
  • We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : $n^+-i(QD)-n^+$ QDIP with undoped quantum dot(QD) active region and $n^+-n^-(QD)-n^+$ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the $n^+-n^-(QD)-n^+$ structure, Si dopant is directly doped in InAs QD at $2{\times}10^{17}/cm^3$. Undoped and doped QDIPs show a photoresponse peak at about $8.3{\mu}m$, ranging from $6{\sim}10{\mu}m$ at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.

Photocurrent characteristics of close-packed HgTe nanoparticles in the infrared-wavelength range (적외선 영역에서의 HgTe 나노입자 광전류 특성)

  • Kim, Hyun-Suk;Park, Byung-Jun;Kim, Jin-Hyoung;Lee, Jun-Woo;Kim, Dong-Won;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.25-28
    • /
    • 2004
  • Photocurrent spectrum, photoresponse, and I-V measurements were made for close-packed HgTe nanoparticles without organic capping materials to investigate their photocurrent characteristics in the infrared range. In absorption and photoluminescence (PL) spectra taken for the close-packed nanoparticles film, the wavelengths of exciton peaks was red-shifted, compared with organic capped HgTe nanoparticles dispersed in solution. This red-shift is caused by the lessening of the exciton binding energy. The I-V curves and photoresponse for the close-packed nanoparticles film reveal their dark current and fast photoresponse with no current decay, respectively. The observation suggests that the HgTe nanoparticles are a very prospect material applicable for photodetectors in the whole IR range.

  • PDF

Investigation of detection wavelength of Quantum Well Infrared-Photodetector

  • Hwang, S.H.;Lim, J.G.;Song, J.D.;Shin, J.C.;Heo, D.C.;Choi, W.J.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.257-261
    • /
    • 2015
  • We report on GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) that can cover the spectral range of $3.6-25{\mu}m$. One advantage of the GaAs QWIPs is the wavelength tenability as a function of their structural parameters. We have performed a systematic calculation on the detection wavelength of a typical $GaAs/Al_xGa_{1-x}As$ multi-quantum-well photodetector, with the aluminum mole fraction (x) of $Al_xGa_{1-x}As$ barrier in the range of 0.15-0.43 and the quantum-well width range from 30 to 60 $60{\AA}$. Design and fabrication of a QWIP based on $GaAs/Al_{0.23}Ga_{0.77}As$ structure with $37{\AA}$-thick well width has been carried out. The calculated operation wavelength of the QWIP is in a good agreement with the experimental data taken by photo response and activation energy calculation from thermal quenching of integrated photoluminescence.

Energy-band model on photoresponse transitions in biased asymmetric dot-in-double-quantum-well infrared detector

  • Sin, Hyeon-Uk;Choe, Jeong-U;Kim, Jun-O;Lee, Sang-Jun;No, Sam-Gyu;Lee, Gyu-Seok;Krishna, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.234-234
    • /
    • 2010
  • The PR transitions in asymmetric dot-in-double-quantum-well (DdWELL) photodetector is identified by bias-dependent spectral behaviors. Discrete n-i-n infrared photodetectors were fabricated on a 30-period asymmetric InAs-QD/[InGaAs/GaAs]/AlGaAs DdWELL wafer that was prepared by MBE technique. A 2.0-monolayer (ML) InAs QD ensemble was embedded in upper combined well of InGaAs/GaAs and each stack is separated by a 50-nm AlGaAs barrier. Each pixel has circular aperture of 300 um in diameter, and the mesa cell ($410{\times}410\;{\mu}m^2$) was defined by shallow etching. PR measurements were performed in the spectral range of $3{\sim}13\;{\mu}m$ (~ 100-400 meV) by using a Fourier-transform infrared (FTIR) spectrometer and a low-noise preamplifier. The asymmetric photodetector exhibits unique transition behaviors that near-/far-infrared (NIR/FIR) photoresponse (PR) bands are blue/red shifted by the electric field, contrasted to mid-infrared (MIR) with no dependence. In addition, the MIR-FIR dual-band spectra change into single-band feature by the polarity. A four-level energy band model is proposed for the transition scheme, and the field dependence of FIR bands numerically calculated by a simplified DdWELL structure is in good agreement with that of the PR spectra. The wavelength shift by the field strength and the spectral change by the polarity are discussed on the basis of four-level transition.

  • PDF