• Title/Summary/Keyword: infrared image analysis

Search Result 250, Processing Time 0.024 seconds

Implementation of a Thermal Imaging System with Focal Plane Array Typed Sensor (초점면 배열 방식의 열상카메라 시스템의 구현)

  • 박세화;원동혁;오세중;윤대섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.396-403
    • /
    • 2000
  • A thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main part of the system is a thermal camera in which a focal plane array typed sensor is introduced. The sensor detects the mid-range infrared spectrum of target objects and then it outputs a generic video signal which should be processed to form a frame thermal image. Here, a digital signal processor(DSP) is applied for the high speed processing of the sensor signals. The DSP controls analog-to-digital converter, performs correction algorithms and outputs the frame thermal data to frame buffers. With the frame buffers can be generated a NTSC signal and transferred the frame data to personal computer(PC) for the analysis and a monitoring of the thermal scenes. By performing the signal processing functions in the DSP the overall system achieves a simple configuration. Several experimental results indicate the performance of the overall system.

  • PDF

Analysis of Cloud Types and Low-Level Water Vapor Using Infrared Split-Window Data of NOAA/AVHRR (NOAA/AVHRR 적외 SPLIT WINDOW 자료를 이용한 운형과 하층수증기 분석)

  • 이미선;이희훈;서애숙
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.1
    • /
    • pp.31-45
    • /
    • 1995
  • The values of brightness temperature difference (BTD) between 11um and 12um infrared channels may reflect amounts of low-level water vapor and cloud types due to the different absorptivity for water vapor between two channels. A simple method of classifying cloud types at night was proposed. Two-dimensional histograms of brightness temperature of the 11um channel and the BTD between the split window data over subareas around characteristic clouds such as Cb(cumulonimbus), Ci(cirrus), and Sc(stratocumulus) was constructed. Cb, Ci and Sc can be classified by seleting appropriate thresholds in the two-dimensional histograms. And we can see amounts of low-level water vapor in clear area as well as cloud types in cloudy area in the BTD image. The map of cloud types and low-level water vapor generated by this method was compared with 850hPa and 1000hPa relative humidity(%) of numerical analysis data and nephanalysis chart. The comparisons showed reasonable agreement.

Applying tilt mechanism for high-resolution image acquisition (고해상도 영상 획득을 위한 틸트 메커니즘 적용 기법)

  • Song, Chun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.31-37
    • /
    • 2014
  • In this paper, to compensate the degraded performance in high-resolution infrared sensor due to assembling error, the influence of each component was evaluated through the sensitivity analysis of lens assembly, axis mirror, and detector and also suggested detector tilt mechanism for compensation. 3 detector tilt mechanisms were investigated. The first one is 'Shim plate' method which is applying shim on installing plane. The second one is 'Tilting screw' method that is using tilt screw for adjusting detection plane. The last one is 'Micrometer head' method that is installing micrometer on detection plane and acquiring quantitative data. Based on the investigation result, 'Tilting screw' method was applied due to ease of user control, small volume, and real-time controllability, thereby we could acquire high-resolution infrared images. The research result shows that the tilting mechanism is necessary technology for the implementation of high-resolution infrared imaging system.

Analysis of DITI, HRV about the Effect of Far Infrared Radiation Applied to Whole Body('On-tong Therapy') (전신 원적외선 조사요법(온통요법(溫通療法))의 치료 효과에 대한 적외선 체열 분포와 심박변이도 검사 분석)

  • Kim, Min-Young;Ahn, Ji-Yoon;Choi, Seok-Young;Hwang, Deok-Sang;Lee, Jin-Moo;Jang, Jun-Bock;Lee, Kyung-Sub;Lee, Chang-Hoon
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.26 no.4
    • /
    • pp.94-106
    • /
    • 2013
  • Objectives: The purpose of this study is to find the effect of Far Infrared Radiation (FIR) about improvement of chief complaints and health state. Methods: For this study we evaluated thermographic images, heart rate variability (HRV), visual analogue scale (VAS) score of 34 patients with various diseases. Tests were done two times, before and after treatments and we compared the test results. We used the temperature difference between CV12 and CV4, both sides of PC8, LR3 for recognizing improvement of blood circulation. We analyzed the change of complexity, stability of autonomic nervous system (ANS) by HRV test. The patients were asked to fill out questionnaire about the severity of symptoms by VAS score. Analyses were undertaken using SPSS ver.12.0.1 and p-value of < 0.05 was considered significant. Results: Statistical analysis shows that Far Infrared Radiation (FIR) had significant efficiency in increasing surface temperature and reducing VAS pain scores. In heart rate variability (HRV) test, LF/HF ratio showed tends to improve. Conclusions: The application of an FIR to whole body appears to alleviate various complaints of patients.

IR Image Segmentation using GrabCut (GrabCut을 이용한 IR 영상 분할)

  • Lee, Hee-Yul;Lee, Eun-Young;Gu, Eun-Hye;Choi, Il;Choi, Byung-Jae;Ryu, Gang-Soo;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.260-267
    • /
    • 2011
  • This paper proposes a method for segmenting objects from the background in IR(Infrared) images based on GrabCut algorithm. The GrabCut algorithm needs the window encompassing the interesting known object. This procedure is processed by user. However, to apply it for object recognition problems in image sequences. the location of window should be determined automatically. For this, we adopted the Otsu' algorithm for segmenting the interesting but unknown objects in an image coarsely. After applying the Otsu' algorithm, the window is located automatically by blob analysis. The GrabCut algorithm needs the probability distributions of both the candidate object region and the background region surrounding closely the object for estimating the Gaussian mixture models(GMMs) of the object and the background. The probability distribution of the background is computed from the background window, which has the same number of pixels within the candidate object region. Experiments for various IR images show that the proposed method is proper to segment out the interesting object in IR image sequences. To evaluate performance of proposed segmentation method, we compare other segmentation methods.

Operating Conditions Proposal of Bandgap Circuit at Cryogenic Temperature for Signal Processing of Infrared Detector and a Performance Analysis of a Manufactured Chip (적외선 탐색기 신호처리를 위한 극저온 밴드갭 회로 동작 조건 제안 및 제작된 칩의 성능 분석)

  • Kim Yon Kyu;Kang Sang-Gu;Lee Hee-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.59-65
    • /
    • 2004
  • A stable reference voltage generator is necessary to the infrared image signal readout circuit(ROIC) to improve noise characteristics of signal originated from infrared devices, that is, to gain good images. In this paper, bandgap circuit operating at cryogenic temperature of 77K for Infrared image ROIC(readout integrated circuit) was first made. It demonstrates practical use possibility through taking measurements and estimations. Bandgap circuit is a representative voltage reference circuit. Most of bandgap reference circuits which are presented so far operate at room temperature, and their characteristic are not suitable for infrared image ROIC operating at liquid nitrogen temperature, 77K. To design bandgap circuit operating at cryogenic temperature, suitable circuit is selected and the parameter characteristics of used devices as temperature change are seen by a theoretical study and fitted at liquid temperature with considering such characteristics. This circuit has been fabricated in the Hynix 0.6um standard CMOS process, and the output voltage measured shows that the stability is 1.042±0.0015V over the temperature range of 60K to 110K and is better than bandgap circuits operated at room temperature.

IMPROVEMENT OF AKARI NEP-DEEP 2-24 MICRON IMAGES/CATALOGUES WITH NEW CALIBRATIONS

  • Murata, Kazumi;Matsuhara, Hideo;Takagi, Toshinobu;Wada, Takehiko;Oyabu, Shinki;Oi, Nagisa
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.149-150
    • /
    • 2012
  • We have created new catalogues of AKARI/IRC $2-24{\mu}m$ North Ecliptic Pole Deep survey through new methods of image analysis. In the new catalogues the number of false detection decreased by a factor of 10 and the number of objects detected in multiple bands increased by more than 1,500 compared to the previous work. In this proceedings the new methods of image analysis and the performance of the new catalogues are described.

Thermal Analysis of Silicon Carbide Coating on a Nickel based Superalloy Substrate and Thickness Measurement of Top Layers by Lock-in Infrared Thermography

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

A Study on the Improvement of Image Quality for a Thermal Imaging System with focal Plane Array Typed Sensor (초점면 배열 방식 열상 카메라 시스템의 화질 개선 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.27-31
    • /
    • 2000
  • Thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main Part of the system is thermal camera in which a focal plane array typed sensor is introduced The sensor detects mid-range infrared spectrum or target objects and then it output generic video signal which should be processed to form a thermal image frame. A digital signal processor(DSP) in the system inputs analog to digital converted data. performs algorithms to improve the thermal images and then outputs the corrected frame data to frame buffers for NTSC encoding and for digital outputs.. To enhance the quality of the thermal images, two point correction method is applied. Figures indicate that the corrected thermal images are much improved.

  • PDF

Near-infrared Subwavelength Imaging and Focusing Analysis of a Square Lattice Photonic Crystal Made from Partitioned Cylinders

  • Dastjerdi, Somayeh Rafiee;Ghanaatshoar, Majid;Hattori, Toshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.262-268
    • /
    • 2013
  • We study the focusing properties of a two-dimensional square-lattice photonic crystal (PC) comprising silica and germanium partitioned cylinders in air background. The finite difference time domain (FDTD) method with periodic boundary condition is utilized to calculate the dispersion band diagram and the FDTD method incorporating the perfectly matched layer boundary condition is employed to simulate the image formation. In contrast to the common square PCs in which the negative refraction effect occurs in the first photonic band without negative phase propagation, in our suggested model system, the frequency with negative refraction exists in the second band and in near-infrared region. In this case, the wave propagates with a negative phase velocity and the evanescent waves can be supported. We also discuss the dependency of the image resolution and its location on surface termination, source location, and slab thickness. According to the simulation results, spatial resolution of the proposed PC lens is below the radiation wavelength.