• Title/Summary/Keyword: infrared image analysis

Search Result 250, Processing Time 0.027 seconds

Parameterized Modeling of Spatially Varying PSF for Lens Aberration and Defocus

  • Wang, Chao;Chen, Juan;Jia, Hongguang;Shi, Baosong;Zhu, Ruifei;Wei, Qun;Yu, Linyao;Ge, Mingda
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.136-143
    • /
    • 2015
  • Image deblurring by a deconvolution method requires accurate knowledge of the blur kernel. Existing point spread function (PSF) models in the literature corresponding to lens aberrations and defocus are either parameterized and spatially invariant or spatially varying but discretely defined. In this paper, a parameterized model is developed and presented for a PSF which is spatially varying due to lens aberrations and defocus in an imaging system. The model is established from the Seidel third-order aberration coefficient and the Hu moment. A skew normal Gauss model is selected for parameterized PSF geometry structure. The accuracy of the model is demonstrated with simulations and measurements for a defocused infrared camera and a single spherical lens digital camera. Compared with optical software Code V, the visual results of two optical systems validate our analysis and proposed method in size, shape and direction. Quantitative evaluation results reveal the excellent accuracy of the blur kernel model.

Analysis of Albedo by Level-2 Land Use Using VIIRS and MODIS Data (VIIRS와 MODIS 자료를 활용한 중분류 토지이용별 알베도 분석)

  • Lee, Yonggwan;Chung, Jeehun;Jang, Wonjin;Kim, Jinuk;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1385-1394
    • /
    • 2022
  • This study was to analyze the change in albedo by level-2 land cover map for 20 years(2002-2021) using MODerate resolution Imaging Spectroradiometer (MODIS) data. Also, the difference from the MODIS data was analyzed using the 10-year (2012-2021) data of Visible Infrared Imaging Radiometer Suite (VIIRS). For the albedo data of MODIS and VIIRS, daily albedo data, MCD43A3 and VNP43IA, of 500 m spatial resolution of sinusoidal tile grid produced by Bidirectional Reflectance Distribution Function (BRDF) model were prepared for the South Korea range. Reprojection was performed using the code written based on Python 3.9, and the nearest neighbor was applied as the resampling method. White sky albedo and black sky albedo of shortwave were used for analysis. As a result of 20-year albedo analysis using MODIS data, the albedo tends to rise in all land use. Compared to the 2000s (2002-2011), the average albedo of the 2010s (2012-2021) showed the most significant increase of 0.0027 in the forest area, followed by the grass increase of 0.0024. As a result of comparing the albedo of VIIRS and MODIS, it was found that the albedo of VIIRS was larger from 0.001 to 0.1, which was considered to be due to differences in the surface reflectivity according to the time of image capture and sensor characteristics.

Infrared Gait Recognition using Wavelet Transform and Linear Discriminant Analysis (웨이블릿 변환과 선형 판별 분석법을 이용한 적외선 걸음걸이 인식)

  • Kim, SaMun;Lee, DaeJong;Chun, MyungGeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.622-627
    • /
    • 2014
  • This paper proposes a new method which improves recognition rate on the gait recognition system using wavelet transform, linear discriminant analysis and genetic algorithm. We use wavelet transform to obtain the four sub-bands from the gait energy image. In order to extract feature data from sub-bands, we use linear discriminant analysis. Distance values between training data and four sub-band data are calculated and four weights which are calculated by genetic algorithm is assigned at each sub-band distance. Based on a new fusion distance value, we conducted recognition experiments using k-nearest neighbors algorithm. Experimental results show that the proposed weight fusion method has higher recognition rate than conventional method.

Enhancement of Inter-Image Statistical Correlation for Accurate Multi-Sensor Image Registration (정밀한 다중센서 영상정합을 위한 통계적 상관성의 증대기법)

  • Kim, Kyoung-Soo;Lee, Jin-Hak;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.1-12
    • /
    • 2005
  • Image registration is a process to establish the spatial correspondence between images of the same scene, which are acquired at different view points, at different times, or by different sensors. This paper presents a new algorithm for robust registration of the images acquired by multiple sensors having different modalities; the EO (electro-optic) and IR(infrared) ones in the paper. The two feature-based and intensity-based approaches are usually possible for image registration. In the former selection of accurate common features is crucial for high performance, but features in the EO image are often not the same as those in the R image. Hence, this approach is inadequate to register the E0/IR images. In the latter normalized mutual Information (nHr) has been widely used as a similarity measure due to its high accuracy and robustness, and NMI-based image registration methods assume that statistical correlation between two images should be global. Unfortunately, since we find out that EO and IR images don't often satisfy this assumption, registration accuracy is not high enough to apply to some applications. In this paper, we propose a two-stage NMI-based registration method based on the analysis of statistical correlation between E0/1R images. In the first stage, for robust registration, we propose two preprocessing schemes: extraction of statistically correlated regions (ESCR) and enhancement of statistical correlation by filtering (ESCF). For each image, ESCR automatically extracts the regions that are highly correlated to the corresponding regions in the other image. And ESCF adaptively filters out each image to enhance statistical correlation between them. In the second stage, two output images are registered by using NMI-based algorithm. The proposed method provides prospective results for various E0/1R sensor image pairs in terms of accuracy, robustness, and speed.

Evaluation of Rededge-M Camera for Water Color Observation after Image Preprocessing (영상 전처리 수행을 통한 Rededge-M 카메라의 수색 관측에의 활용성 검토)

  • Kim, Wonkook;Roh, Sang-Hyun;Moon, Yongseon;Jung, Sunghun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Water color analysis allows non-destructive estimation of abundance of optically active water constituents in the water body. Recently, there have been increasing needs for light-weighted multispectral cameras that can be integrated with low altitude unmanned platforms such as drones, autonomous vehicles, and heli-kites, for the water color analysis by spectroradiometers. This study performs the preprocessing of the Micasense Rededge-M camera which recently receives a growing attention from the earth observation community for its handiness and applicability for local environment monitoring, and investigates the applicability of Rededge-M data for water color analysis. The Vignette correction and the band alignment were conducted for the radiometric image data from Rededge-M, and the sky, water, and solar radiation essential for the water color analysis, and the resultant remote sensing reflectance were validated with an independent hyperspectral instrument, TriOS RAMSES. The experiment shows that Rededge-M generally satisfies the basic performance criteria for water color analysis, although noticeable differences are observed in the blue (475 nm) and the near-infrared (840 nm) band compared with RAMSES.

A Red Ginseng Internal Measurement System Using Back-Projection (Back-Projection을 활용한 홍삼 내부 측정 시스템)

  • Park, Jaeyoung;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.377-382
    • /
    • 2018
  • This study deals with internal state and tissue density analysis methods for red ginseng grade determination. For internal measurement of red ginseng, there have been various studies on nondestructive testing methods since the 1990s, It was difficult to grasp the most important inner hole and inside whites in the grading. So in this study, we developed a closed capturing device for infra-red illumination environment, and developed an internal measurement system that can detect the presence and diameter of inner hole and inside whites. Made devices consisted of infrared lights with a high transmission rate of red ginseng in 920 nanometer wave band, a infra-red camera and a Y axis actuator with a red ginseng automatically controlled focus on the camera. The proposed algorithm performs an auto-focus system on the Y-axis actuator to automatically adjust the sharp focus of the object according to the size and thickness. Then red ginseng is rotated $360^{\circ}$ at $1^{\circ}$ intervals and 360 total images are acquired, and reconstructed as a sinogram through Radon transform and Back-projection algorithm was performed to acquire internal images of red ginseng. As a result of the algorithm, it was possible to acquire internal cross-sectional image regardless of the thickness and shape of red ginseng. In the future, if more than 10,000 different shapes and sizes of red ginseng internal cross-sectional image are acquired and the classification criterion is applied, it can be used as a reliable automated ginseng grade automatic measurement method.

Analysis of Heat Environment in Nursery Pig Behavior (자돈의 행동에 미치는 열환경 분석)

  • Sang, J.I.;Choi, H.L.;Jeon, J.H.;Jeon, B.S.;Kang, H.S.;Lee, E.S.;Park, K.H.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2009
  • This study was conducted to find ways to control environment with the difference between body temperature and background temperature based on swine activity, and to apply to the environment control system of swine barns based on the findings. Following are the results. 1. Swine activity related to background temperature was achieved as color images and swine activity status was categorized into cold, comfortable, and hot periods with visualization system (thermal image system). 2. Thermal image system consisted of an infrared CCD camera, an image processing board - DIF (TH3100), an main computer (400Hz, 128M, 586 Pentium model) with C++ program installed. 3. Thermal image system categorizing temperatures into cold, comfortable, and hot was applicable to the environment control system of swine barns 4. Feed intake was higher in cold temperature, and finishing weight and weight gain per day in cold temperature were lower than others (p<0.05).

  • PDF

Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model (인공위성 자료와 궤적분석 모델을 이용한 화산재 모니터링)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • Satellite remote sensing data have been valuable tool for volcanic ash monitoring. In this study, we present the results of application of satellite remote sensing data for monitoring of volcanic ash for three major volcanic eruption cases (2008 Chait$\acute{e}$n, 2010 Eyjafjallaj$\ddot{o}$kull, and 2011 Shinmoedake volcanoes). Volcanic ash detection products based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) observation data using infrared brightness temperature difference technique were compared to the forward air mass trajectory analysis by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. There was good correlation between MODIS volcanic ash image and trajectory lines after the volcanic eruptions, which support the feasibility of using the integration of satellite observed and model derived data for volcanic ash forecasting.

Satellite Image Analysis of Low-Level Stratiform Cloud Related with the Heavy Snowfall Events in the Yeongdong Region (영동 대설과 관련된 낮은 층운형 구름의 위성관측)

  • Kwon, Tae-Yong;Park, Jun-Young;Choi, Byoung-Cheol;Han, Sang-Ok
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.577-589
    • /
    • 2015
  • An unusual long-period and heavy snowfall occurred in the Yeongdong region from 6 to 14 February 2014. This event produced snowfall total of 194.8 cm and the recordbreaking 9-day snowfall duration in the 103-year local record at Gangneung. In this study, satellite-derived cloud-top brightness temperatures from the infrared channel in the atmospheric window ($10{\mu}m{\sim}11{\mu}m$) are examined to find out the characteristics of clouds related with this heavy snowfall event. The analysis results reveal that a majority of precipitation is related with the low-level stratiform clouds whose cloud-top brightness temperatures are distributed from -15 to $-20^{\circ}C$ and their standard deviations over the analysis domain (${\sim}1,000km^2$, 37 satellite pixels) are less than $2^{\circ}C$. It is also found that in the above temperature range precipitation intensity tends to increase with colder temperature. When the temperatures are warmer than $-15^{\circ}C$, there is no precipitation or light precipitation. Furthermore this relation is confirmed from the examination of some other heavy snowfall events and light precipitation events which are related with the low-level stratiform clouds. This precipitation-brightness temperature relation may be explained by the combined effect of ice crystal growth processes: the maximum in dendritic ice-crystal growth occurs at about $-15^{\circ}C$ and the activation of ice nuclei begins below temperatures from approximately -7 to $-16^{\circ}C$, depending on the composition of the ice nuclei.

Hyperspectral Imaging and Partial Least Square Discriminant Analysis for Geographical Origin Discrimination of White Rice

  • Mo, Changyeun;Lim, Jongguk;Kwon, Sung Won;Lim, Dong Kyu;Kim, Moon S.;Kim, Giyoung;Kang, Jungsook;Kwon, Kyung-Do;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.293-300
    • /
    • 2017
  • Purpose: This study aims to propose a method for fast geographical origin discrimination between domestic and imported rice using a visible/near-infrared (VNIR) hyperspectral imaging technique. Methods: Hyperspectral reflectance images of South Korean and Chinese rice samples were obtained in the range of 400 nm to 1000 nm. Partial least square discriminant analysis (PLS-DA) models were developed and applied to the acquired images to determine the geographical origin of the rice samples. Results: The optimal pixel dimensions and spectral pretreatment conditions for the hyperspectral images were identified to improve the discrimination accuracy. The results revealed that the highest accuracy was achieved when the hyperspectral image's pixel dimension was $3.0mm{\times}3.0mm$. Furthermore, the geographical origin discrimination models achieved a discrimination accuracy of over 99.99% upon application of a first-order derivative, second-order derivative, maximum normalization, or baseline pretreatment. Conclusions: The results demonstrated that the VNIR hyperspectral imaging technique can be used to discriminate geographical origins of rice.