• Title/Summary/Keyword: infrared image analysis

Search Result 250, Processing Time 0.027 seconds

Urbanization and Urban Heat Island Analysis Using LANDSAT Imagery: Sejong City As a Case Study (LANDSAT 영상을 이용한 세종특별자치시의 도시화와 열섬현상 분석)

  • Kim, Mi-Kyeong;Kim, Sang-Pil;Kim, Nam-Hoon;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.1033-1041
    • /
    • 2014
  • Rapid urbanization of Korea was an unprecedented example in the world and urban population increased significantly. As a result, unbalanced distribution of population is serious problem in Korea because approximately 50% of the population is concentrated in the capital area that is 10% of nation's territory, thereby occurring various urban problems including UHI. Hence, Sejong Special Autonomous City was inaugurated officially on 2 July 2012 in order to decentralize population of capital area and induce more balanced regional development. The Sejong City has been changed drastically over a period of years as developed practically since the late 2000's and is expected to have new problems of urbanization. The land cover change due to urbanization is the main cause of UHI that urban area is significantly warmer than its surrounding areas and UHI is not only affecting urban climate change but also natural environment. So the purpose of this research is to analyze level of urbanization and UHI effect and to provide the correlation analysis between Land Surface Temperature and spectral indices. To achieve this, satellite imagery from LANDSAT were used. NDVI, NDBI, and UI were calculated using red, near-infrared, mid-infrared ($0.63{\mu}m-1.75{\mu}m$) images and LST was retrieved utilizing thermal infrared ($10.4{\mu}m-12.5{\mu}m$) image. Based on each index and LST, Changes of NDVI, UI and UHI through TVI were analyzed in Sejong City. UHI effect increased around newly constructed multi-functional administrative city, the correlation between LST and NDVI was negative and UI was strong positive.

Synthesis and Characterization of a $Di-{\mu}-oxo-bridged$ Molybdeum(V) Complexes (두 개 산소 가교형 몰리브덴(V)착물의 합성과 그 성질에 관한 연구)

  • Kim, Il-Chool;Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.205-210
    • /
    • 1999
  • The Mo(V) $di-{\mu}-oxo$ type $[Mo_2O_4(H_2O)_2L]Cl_2$ complexes(L: 4,4'-Diphenyl-2,2'-dipyridyl, 4,4'-Dimethyl-2,2'-dipyridyl, 4,7-Diphenyl-1,10-phenanthroline) have been prepared by the reaction of $[Mo_2O_4(H_2O)_6]^{2+}$ with a series of chelate ligands. These complexes are completed by two terminal oxygens arranged trans to one another and each ligand forms a chelate types. In $Mo_2O_4(H_2O)_2L$ two $H_2O$ coordinated at trans site of terminal oxgens. The prepared complexes have been characterized by elemental analysis, infrared spectra, electronic spectra, $^1H$ nuclear magnetic resonance spectra, and thermal analysis(TG-DTA). In the potential range -0.00V to -1.00V at scan rate of $50mVs^{-1}$, a cathodic peak at -0.83V ${\sim}$ -0.88V (vs SCE) and an anodic peak at -0.54V ${\sim}$ -0.88V (vs SCE) have been observed in aquous solution. The ratio of the cathodic to anodic current(Ipc/Ipa) is almost 2, we infer that redox is irreversible as dimer forms broken.

Corrosion Level Measurement Technique for RC Reinforcement Using Non-Destructive Test Methods (비파괴기법을 이용한 철근 콘크리트 벽체 철근의 부식률 예측기법)

  • Roh, Young-Sook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2011
  • In order to measure corrosion level of reinforcement rebar in RC structures, non-destructive test methods which are concrete surface current density method and infrared thermographic technique were employed to measure corrosion levels. Experimental test parameters were various levels of corrosion states(0, 1, 3, 5, 7% of weight loss) and concrete cover depth(30 mm, 40 mm) and two different reinforcing rebar arrangements. The larger amount of concrete surface current density, the higher corrosion level in reinforcement rebar. The laboratory conditions which are ambient temperature and humidity have negligible effect on the infrared thermographical data. After analysis of current density and temperature distribution from concrete surface, corrosion level of reinforcement rebar embedded in concrete can be measured qualitatively based on the amount of electric current and heat flux.

Development of On-site Heat Loss Audit and Energy Consulting System for Greenhouse

  • Kwon, Jin Kyung;Kang, Geum Choon;Lee, Seong Hyun;Sung, Je Hoon;Yun, Nam Kyu;Moon, Jong Pil;Lee, Su Jang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.287-294
    • /
    • 2013
  • Purpose: Greenhouses for a protected horticulture covered with a plastic or glass are easy to have weakness in a heat loss by deterioration, damage, poor construction, and so on. To grasp the vulnerable points of heat loss of the greenhouses is important for heating energy saving. In this study, an on-site heat loss audit and energy consulting system were developed for an efficient energy usage of a greenhouse. Method: Developed system was mounted with infrared thermal and visual cameras to grasp the heat loss from the greenhouse quickly and exactly, and a trial calculation program of heating load of greenhouse to provide farmers with the information of heating energy usage. Results: Developed system could print out the reports about the locations and causes of the heat losses and improvement methods made up by an operator. The mounted trial calculation program could print out the information of the period heating load and fuel cost according to the conditions of greenhouse and cultivation. The program also mounted the databases of the information on the 13 horticultural energy saving technologies developed by the Korea Rural Development Administration and simple economic analysis sub-program to predict the payback period of the technologies. Conclusion: The developed system was expected to be used as the basic equipment for an instructors of district Agricultural Technology and Extension Centers to conduct the energy consulting service for the farmers within the jurisdiction.

Assessment of Relapsing Urolithiasis from K43 with Erosive Gastritis (미란성 위염 환자 K43에서 재발성 요로 결석에 관한 연구)

  • 김재웅
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.44-52
    • /
    • 1997
  • Nephrolithiasis is the most common disorder of the urinary tract in hospitalized patients, more frequently increased in 30~50 years of age, more common in males than in females, prior right stone to left side, and than upper ureteral stone is found in cultural country, while lower ureteral stone is increased in uncultural country. Stone components are classified as calcium oxalate, calcium phosphate, magnesium ammonium phosphate, uric acid, cystine, and their mixed stone, respectively. According to the pathophysiology of urinary stones, supersaturation/crystalization of inorganic salt concentration in urine, organic matrix, inhibitor deficiency, and epitaxy theory could be based on the stone formation. Not only hypercalciuria, hyperparathyroidism, hyperoxaluria, hyperuricosuria, and cystinuria, but also renal tubular acidosis, hypervitaminosis D, and peptic ulcer, are significantly associated with nephrolithiasis. In this study upper ureteral stone component were analyzed with chemical analysis, infrared spectrum, and image analyzer from K43 patient wit erosive gastritis. As the results, mixed stone of calcium oxalate dihydrate and calcium phosphate apatite was identified, the values of clinical test in blood and urine maintained normal revels. The relapsing urinary stone from K43 have no correlation between factors for stone formation reported early, also have no evidence for risk from erosive gastritis.

  • PDF

Influence of Filler and Cure Systems on Whitening of EPDM Composites by Formation of Metal Salt (충전 시스템과 가교 시스템이 금속염 형성에 의한 EPDM 복합체의 백화에 미치는 영향)

  • Chung, Hye-Seung;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.210-215
    • /
    • 2012
  • Whitening phenomena of the EPDM composites with different inorganic filler compositions which were aged at $90^{\circ}C$ for 7 days in air and tap water atmospheres, respectively, were investigated. The aged samples in tap water containing stearic acid exhibited severe whitening phenomena, while all the samples aged in air did not show any whitening. Depending on the filler compositions, there was no big difference in the whitening phenomena. The whitening materials were analyzed using gas chromatography/mass spectrometry (GC/MS), image analysis, energy-dispersive X-ray spectroscopy (EDX), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The whitening materials were identified to be salts of stearic acid. The salts of stearic acid were formed by reaction of metal cation in tap water and stearic acid in the sample.

Prediction of moisture contents in green peppers using hyperspectral imaging based on a polarized lighting system

  • Faqeerzada, Mohammad Akbar;Rahman, Anisur;Kim, Geonwoo;Park, Eunsoo;Joshi, Rahul;Lohumi, Santosh;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.995-1010
    • /
    • 2020
  • In this study, a multivariate analysis model of partial least square regression (PLSR) was developed to predict the moisture content of green peppers using hyperspectral imaging (HSI). In HSI, illumination is essential for high-quality image acquisition and directly affects the analytical performance of the visible near-infrared hyperspectral imaging (VIS/NIR-HSI) system. When green pepper images were acquired using a direct lighting system, the specular reflection from the surface of the objects and their intensities fluctuated with time. The images include artifacts on the surface of the materials, thereby increasing the variability of data and affecting the obtained accuracy by generating false-positive results. Therefore, images without glare on the surface of the green peppers were created using a polarization filter at the front of the camera lens and by exposing the polarizer sheet at the front of the lighting systems simultaneously. The results obtained from the PLSR analysis yielded a high determination coefficient of 0.89 value. The regression coefficients yielded by the best PLSR model were further developed for moisture content mapping in green peppers based on the selected wavelengths. Accordingly, the polarization filter helped achieve an uniform illumination and the removal of gloss and artifact glare from the green pepper images. These results demonstrate that the HSI technique with a polarized lighting system combined with chemometrics can be effectively used for high-throughput prediction of moisture content and image-based visualization.

Effects of Gas Background Temperature Difference(Emissivity) on OGI(Optical Gas Image) Clarity (가스의 배경 온도 차이(방사율)가 OGI(Optical Gas Image)의 선명도에 미치는 영향)

  • Park, Su-Ri;Han, Sang-Wook;Kim, Byung-Jick;Hong, Cheol-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2017
  • Currently gas safety management in the industrial field has been done by LDAR as contact method or methane leak detector as non-contact method. But LDAR method requires a lot of man-power and methane leak detector have the limitation of methane only. Therefore the Research on the OGI(optical gas image) has big attention by industry. This research was undertaken to see the effect of background temperature difference of gas cloud on the clarity of OGI. The background temperature control panel was constructed to cool down the background temperature. OGI was taken at the various methane gas ejection rate and the designed temperature difference. The experimental results showed that the OGI(when the temperature difference is $-6^{\circ}C$) is more clear thane the OGI(when the temperature difference is zero). To quantify the clarity difference, MATLAB's RGB analysis method was employed. The RGB value of the OGI at ${\Delta}T-6^{\circ}C$ was 20% lower than the OGI at ${\Delta}T0^{\circ}C$. The clarity difference by T difference can be explained by the total radiation law. When the background temperature of the gas is lower than the air temperature, the radiation energy coming into the OGI lens is increasing. As the energy is increasing, the OGI image becomes clear.

A Study on Clutter Rejection using PCA and Stochastic features of Edge Image (주성분 분석법 및 외곽선 영상의 통계적 특성을 이용한 클러터 제거기법 연구)

  • Kang, Suk-Jong;Kim, Do-Jong;Bae, Hyeon-Deok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.12-18
    • /
    • 2010
  • Automatic Target Detection (ATD) systems that use forward-looking infrared (FLIR) consists of three stages. preprocessing, detection, and clutter rejection. All potential targets are extracted in preprocessing and detection stages. But, this results in a high false alarm rates. To reduce false alarm rates of ATD system, true targets are extracted in the clutter rejection stage. This paper focuses on clutter rejection stage. This paper presents a new clutter rejection technique using PCA features and stochastic features of clutters and targets. PCA features are obtained from Euclidian distances using which potential targets are projected to reduced eigenspace selected from target eigenvectors. CV is used for calculating stochastic features of edges in targets and clutters images. To distinguish between target and clutter, LDA (Linear Discriminant Analysis) is applied. The experimental results show that the proposed algorithm accurately classify clutters with a low false rate compared to PCA method or CV method

An Efficient Method to Estimate Land Surface Temperature Difference (LSTD) Using Landsat Satellite Images (Landsat 위성영상을 이용한 지표온도차 추정기법)

  • Park, Sung-Hwan;Jung, Hyung-Sup;Shin, Han-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.197-207
    • /
    • 2013
  • Difficulties of emissivity determination and atmospheric correction degrade the estimation accuracy of land surface temperature (LST). That is, since the emissivity determination of land surface material and the correction of atmospheric effect are not perfect, it is very difficult to estimate the precise LST from a thermal infrared image such as Landsat TM and ETM+, ASTER, etc. In this study, we propose an efficient method to estimate land surface temperature difference (LSTD) rather than LST from Landsat thermal band images. This method is based on the assumptions that 1) atmospheric effects are same over a image and 2) the emissivity of vegetation region is 0.99. To validate the performance of the proposed method, error sensitive analysis according to error variations of reference land surface temperature and the water vapor is performed. The results show that the estimated LSTD have respectively the errors of ${\pm}0.06K$, ${\pm}0.15K$ and ${\pm}0.30K$ when the water vapor error of ${\pm}0.302g/cm^2$ and the radiance differences of 0.2, 0.5 and $1.0Wm^{-2}sr^{-1}{\mu}m$ are considered. And also the errors of the LSTD estimation are respectively ${\pm}0.037K$, ${\pm}0.089K$, ${\pm}0.168K$ in the reference land surface temperature error of ${\pm}2.41K$. Therefore, the proposed method enables to estimate the LSTD with the accuracy of less than 0.5K.