• Title/Summary/Keyword: infrared cameras

Search Result 202, Processing Time 0.021 seconds

Prediction of Cobb-angle for Monitoring System in Adolescent Girls with Idiopathic Scoliosis using Multiple Regression Analysis

  • Seo, Eun Ji;Choi, Ahnryul;Oh, Seung Eel;Park, Hyun Joon;Lee, Dong Jun;Mun, Joung H.
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.64-71
    • /
    • 2013
  • Purpose: The purpose of this study was to select standing posture parameters that have a significant difference according to the severity of spinal deformity, and to develop a novel Cobb angle prediction model for adolescent girls with idiopathic scoliosis. Methods: Five normal adolescents girls with no history of musculoskeletal disorders, 13 mild scoliosis patients (Cobb angle: $10^{\circ}-25^{\circ}$), and 14 severe scoliosis patients (Cobb angle: $25^{\circ}-50^{\circ}$) participated in this study. Six infrared cameras (VICON) were used to acquire data and 35 standing parameters of scoliosis patients were extracted from previous studies. Using the ANOVA and post-hoc test, parameters that had significant differences were extracted. In addition, these standing posture parameters were utilized to develop a Cobb-angle prediction model through multiple regression analysis. Results: Twenty two of the parameters showed differences between at least two of the three groups and these parameters were used to develop the multi-linear regression model. This model showed a good agreement ($R^2$ = 0.92) between the predicted and the measured Cobb angle. Also, a blind study was performed using 5 random datasets that had not been used in the model and the errors were approximately $3.2{\pm}1.8$. Conclusions: In this study, we demonstrated the possibility of clinically predicting the Cobb angle using a non-invasive technique. Also, monitoring changes in patients with a progressive disease, such as scoliosis, will make possible to have determine the appropriate treatment and rehabilitation strategies without the need for radiation exposure.

Effects of a Water Exercise on the Lower Extremities Coordination during Obstacle Gait in the Female Elderly - Focusing on Training and Detraining Effects - (수중운동이 여성노인 장애물보행 시 하지 협응에 미치는 영향 - 훈련 및 훈련잔여효과 중심으로 -)

  • Yoon, Sukhoon;Chang, Jae-Kwan;Kim, Joonyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • The purpose of this study was to investigate the training and detraining effects of a 8-week water exercise on lower extremities coordination during obstacle gait in the female elderly. Eight elderly participants (age: $76.58{\pm}4.97$ yrs, height: $148.88{\pm}7.19$ cm, body mass: $56.62{\pm}6.82$ kg, and leg length: $82.36{\pm}2.98$ cm), who stayed at the Seoul K welfare center, were recruited for this study. All participants had no history of orthopedic abnormality within the past 1 year and completed the aquatic exercise program which lasted for 8 weeks. To identify the training and detraining effect of 8 weeks of water exercise, a 3-D motion analysis with 7 infrared cameras and one force plate sampling frequency set at 100 Hz and 1,000 Hz, respectively, was performed. A two-way ANOVA was performed to find training and detraining effects among diferent obstacle heights. In this study significant level was set at .05. Significant training effects of LTS (lead foot thigh and shank) coordination in all obstacle height were found (p<.05). It is also found that the training effect of LTS remained 37%, 58%, and 25% in obstacle height of 30%, 40%, and 50%, respectively. Lead foot showed the greater detraining effect of coordination compared with trail foot, and SF (shank and foot) coordination revealed better detraining effects of coordination compare with TS (thigh and shank) in both feet. Based on the findings, a 8 week water exercise give an positive effects to the elderly in terms of segment cooperation which potentially helps reducing their accident falls. The magnitude of detraining may also help the elderly to find the retraining moment.

Disabled Alpine Ski Athlete's Kinematic Characteristic Changes by Computer Aided Design Based Mono Ski Bucket: A Case Study (컴퓨터 디자인 기반 모노스키 버킷 사용에 따른 장애인 알파인 스키 선수의 운동학적 특성 변화 연구: 사례 연구)

  • Koo, Dohoon;Eun, Seondeok;Hyun, Boram;Kweon, Hyosun
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.425-433
    • /
    • 2014
  • The purpose of the study was to investigate the effect of CAD (Computer Aided Design) based alpine mono-ski bucket design on disabled ski athletes' kinematic characteristics. Two national team ski athletes with LW11 disabilities (Locomotion Winter Classification) category for sit ski participated in both pre and post experiment. Both of the subjects performed 3 trials of carved turn on a ski slope under two conditions. Where, subject "A" performed pre experiment with personal bucket and post experiment with the newly developed CAD based bucket whereas, Subject "B" as control subject performed both pre and post experiment with his personal bucket. For the experiment, 24 Infrared cameras were positioned on the ski slope which covered the path of the ski turn. Also, motion capture suit with reflective markers were worn by both subjects. In the result, decrement in medial/lateral displacement of COM, anterior/posterior displacement of COM, flexion/extension angle of trunk as well as velocity losing rate of COM was observed in subject "A" when using the newly developed CAD based bucket. In contrast, no larger effect on performance was observed when using personal buckets. In conclusion, the findings obtained from the study indicated effectiveness of newly developed CAD based bucket by reducing excessive movement of hip and trunk which is an important factor to perform an effective turn.

The Analysis of Differences in Pulmonary Functions, Jerk Cost, and Ground Reaction Force Depending on Professional and Amateur Dancers in Korea Dance (한국무용 숙련자와 미숙련자에 따른 폐기능, 부드러움, 그리고 지면반력의 차이 분석)

  • Park, Yang-Sun;Kim, Mee-Yea;Lee, Sung-Ro
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.349-357
    • /
    • 2014
  • The purpose of this study was to examine the differences in the performance of dancing motions depending on the level of skill by investigating pulmonary functions, ground reaction force, and jerk cost. The subjects of this study were 12 professional dancers (career: 16 yrs) and 12 amateur dancers (career: 9 yrs) who had similar physical conditions. We selected four motion phases which included the diagonal line motion, the deep flexion motion, the breath motion, and the turn motion with one leg after a small step walking motion, with Goodguri Jangdan. In the experiment, 6 infrared cameras were installed in order to analyze the value of the jerk costs and the force plate form. Finally, we measured the pulmonary functions of the subjects. For data analysis, independent t-tests according to each event, were carried out in the data processing. According to the results of FVC % Predicted, the professional dancers showed greater lung capacities than the amateur dancers, indicating that the level of dancing skill influences lung capacity. Based on the result of the balance test, the professional dancers used more vertical power than did the amateur dancers when performing maximal flexion motion. The professional dancers used a propulsive force of pushing their body forward by keeping the center of body higher while the amateur dancers used a braking power by keeping their bodies backward. When performing medial-lateral movements, the amateur dancers were less stable than the professional dancers. There were no differences in values of jerk costs between the amateur dancers and the professional dancers.

The Kinematic Analysis of Upper Extremities for Badminton Smash and Drop Motions depends on the Player's Level (배드민턴 스매시와 드롭 동작 시 선수의 기량 차이에 따른 상지 동작의 운동학적 비교 분석)

  • Jo, A-Ra;Yoo, Si-Hyun;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.201-208
    • /
    • 2013
  • The aim of this study was to investigate badminton smash and drop motion depends on player's level. To perform this study, ten male badminton players were participated: five skilled players (SG, age: $21.6{\pm}1.1$ yrs, height: $181.4{\pm}6.8$ cm, body mass: $72.4{\pm}5.7$ kg, career: $11.2{\pm}1.1$ yrs) and five less-skilled players (LSG, age: $21.2{\pm}1.1$ yrs, height: $180.2{\pm}5.6$ cm, body mass: $73.6{\pm}6.7$ kg, career: $10.6{\pm}0.9$ yrs). Three-dimensional motion analysis with 7 infrared cameras was performed with a sampling frequency as 200 Hz. Player's swing motion was divided into four events: starting motion (E1), backswing (E2), impact (E3), following (E4). For all upper joints, LSG showed greater angle differences between drop and smash motions than that of SG at E3 (p<.05). For all upper joints, greater angular velocities were found in SG than that of LSG. For both groups, significantly smaller angular velocities were found in drop motion than that of smash motion (p<.05). The greater sequential angular velocities (proximal to distal) were found in SG than LSG during smash motion. Based on our findings, performing the same motion between drop and smash would be related to enhance performance at badminton competition. It is expected that these results will be useful in developing a training program for enhancing performance of badminton athletes.

Kinematic Analysis of Cornering with Different Radius of Curve Course in Short Track Speed Skating (쇼트트랙 스피드 스케이팅 곡선주로의 반경 차이에 따른 운동학적 분석)

  • Kim, Tae-Hoon;Jun, Myung-Kyu;Yoo, Si-Hyun;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.2
    • /
    • pp.109-116
    • /
    • 2013
  • The purpose of this study was to provide fundamental information for the enhancement of performance through kinematic analysis of cornering according to the radius of curve course in short track speed skating. To perform this study, six skaters: three narrow radius players(N, body mass: $56.0{\pm}7.2$ kg, height: $163.7{\pm}5.1$ cm, age: $21.3{\pm}1.5$ yrs) and three wide radius players(W, body mass: $61.0{\pm}9.5$ kg, height: $169.0{\pm}4.4$ cm, age: $20.0{\pm}1.7$ yrs). Three-dimensional motion analysis was performed on the section from the forth block starting to show the change of radius to the sixth block using eight infrared cameras(sampling frequency of 100 Hz for N and W players). The time of push-off was greater for N than for W(p<.05) while the radius of center of mass was greater for W than for N(p<.05). The flexion and extension of knee and hip joint were greater for N than for W(p<.05). The external rotation of left knee joint was greater for N than for W(p<.05). Based on the findings, a small radius by increasing the range of the flexion and extension of knee and hip joint with greater external rotation of left knee joint would be related to more efficient run at curve. It is expected that these results will be useful in developing a training program for enhancing performance of short track speed skating athletes.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

Gait Stability in K-pop Professional Dancers

  • Jang, Young Kwan;Hong, Su Yeon;Jang, Inyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.377-382
    • /
    • 2016
  • Objective: The purpose of this study was to provide data on gait characteristics of K-pop professional dancers. Method: Participants were divided into four groups: male dancers (n=10, age: $28.2{\pm}3.4years$, height: $175{\pm}6cm$, weight: $68.9{\pm}5.6kg$), female dancers (n=10, age: $26.7{\pm}3.1years$, height: $162{\pm}4cm$, weight: $52.1{\pm}3.7kg$), non-dancer males (n=10, age: $25.2{\pm}2.6years$, height: $171{\pm}6cm$, weight: $66.4{\pm}5.3kg$), or non-dancer females (n=10, age: $26.2{\pm}3.0years$, height: $161{\pm}5cm$, weight: $56.4{\pm}6.7kg$). Twelve infrared cameras (Qualisys, Oqus 500, Sweden, 150 Hz.) were used to capture three-dimensional motion data. Gait motion data of professional dancers and ordinary persons were obtained. Results: K-pop dancers' dynamic stability during the female toe off event and the male heel contact event was better compared with that of ordinary persons in the front-rear direction. In addition, the results showed a significant difference in the margin of stability (MoS). However, the medial-lateral direction of both female and male dancers during heel contact and the toe off event was more stable compared with ordinary person, who exhibited an increased MoS than did the dancers. Conclusion: This study aimed to investigate the gait characteristics of K-pop professional dancers in comparison with ordinary persons using gait parameters and MoS. The stability of K-pop professional dancers' dynamic gait in the front-rear direction was better than that in the medial-lateral direction. Therefore, further studies in which the dance movements of K-pop dancers are sub-divided and analyzed will be necessary to reduce related injury.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

Development of Stretchable Joint Motion Sensor for Rehabilitation based on Silver Nanoparticle Direct Printing (은 나노입자 프린팅 기반의 재활치료용 신축성 관절센서 개발)

  • Chae, Woen-Sik;Jung, Jae-Hu
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.183-188
    • /
    • 2021
  • Objective: The purpose of this study was to develop a stretchable joint motion sensor that is based on silver nano-particle. Through this sensor, it can be utilized as an equipment for rehabilitation and analyze joint movement. Method: In this study, precursor solution was created, after that, nozel printer (Musashi, Image master 350PC) was used to print on a circuit board. Sourcemeter (Keithley, Keithley-2450) was used in order to evaluate changes of electric resistance as the sensor stretches. In addition, the sensor was attached on center of a knee joint to 2 male adults, and performed knee flexion-extension in order to evaluate accurate analysis; 3 infrared cameras (100 Hz, Motion Master 100, Visol Inc., Korea) were also used to analyze three dimensional movement. Descriptive statistics were suggested for comparing each accuracy of measurement variables of joint motions with the sensor and 3D motions. Results: The change of electric resistance of the sensor indicated multiple of 30 times from initial value in 50% of elongation and the value of electric resistance were distinctively classified by following 10%, 20%, 30%, 40% of elongation respectively. Through using the sensor and 3D camera to analyze movement variable, it showed a resistance of 99% in a knee joint extension, whereas, it indicated about 80% in flexion phase. Conclusion: In this research, the stretchable joint motion sensor was created based on silver nanoparticle that has high conductivity. If the sensor stretches, the distance between nanoparticles recede which lead gradual disconnection of an electric circuit and to have increment of electric resistance. Through evaluating angle of knee joints with observation of sensor's electric resistance, it showed similar a result and propensity from 3D motion analysis. However, unstable electric resistance of the stretchable sensor was observed when it stretches to maximum length, or went through numerous joint movements. Therefore, the sensor need complement that requires stability when it comes to measuring motions in any condition.