• Title/Summary/Keyword: infrared:galaxies

Search Result 259, Processing Time 0.03 seconds

PATIAL DISTRIBUTION OF STAR FORMATION ACTIVITY ON NGC 253 BY FIR AND RADIO EMISSION LINES

  • Takahashi, H.;Matsuo, H.;Nakanishi, K.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.261-262
    • /
    • 2012
  • The aim of this research is to reveal the spatial distribution of the star formation activity of nearby galaxies by comparing CO molecular emission lines with the large area observation in far-infrared (FIR) lines. We report the imaging observations of NGC 253 by FIR forbidden lines via FIS-FTS and CO molecular lines from low to high excitation levels with ASTE, which are good tracers of star forming regions or photo-dissociation regions, especially spiral galaxies, in order to derive the information of the physical conditions of the ambient interstellar radiation fields. The combination of spatially resolved FIR and sub-mm data leads to the star formation efficiency within galaxy. The ratio between the FIR luminosity and molecular gas mass, $L_{FIR}/M_{H_2}$, is expected to be proportional to the number of stars formed in the galaxy per unit molecular gas mass and time. Moreover the FIR line ux shows current star formation activity directly. Furthermore these can be systematic and statistical data for star formation history and evolution of spiral galaxies.

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M.;LEE MYUNG GYONG
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.125-128
    • /
    • 2005
  • In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

Star formation and TDGs in the debris of interacting systems

  • Sengupta, Chandreyee;Dwarakanath, K.S.;Saikia, D.J.;Scott, T.C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.34.2-34.2
    • /
    • 2013
  • Star formation beyond the galaxy discs and the principles governing it have attracted a lot of recent attention and the advent of ultraviolet (UV) and mid-infrared (MIR) telescopes like the GALEX and Spitzer have enabled major advances in such studies. In order to study the HI gas properties such as the morphology, kinematics and column density distributions, and their correlation with the star forming zones, especially in the tidal bridges, tails and debris, we carried out an HI survey of a set of Spitzer-observed interacting systems using the Giant Metrewave Radio Telescope (GMRT). Here we present results from three of these systems, Arp86, Arp181 and Arp202. In Arp86, we detect excellent star-gas correlation in the star forming tidal bridges and tails. In Arp181, we find the two interacting galaxies to be highly gas depleted and the entire gas of the system is found in the form of a massive tidal debris about 70 kpc from the main galaxies. In all three cases, Arp86, Arp181 and Arp202, the tidal debris seem to host ongoing star formation. We also detect three new candidate tidal dwarf galaxies (TDG) in these systems with large quantities of gas associated with them.

  • PDF

Spiral Arm Features in Disk Galaxies: A Density-Wave Theory

  • Kim, Yonghwi;Ho, Luis C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2019
  • Several observational results show a tighter pitch angle at wavelengths of optical and near-infrared than those that are associated with star formation, which is in agreement with the prediction of the density wave theory. In my recent numerical studies, the dependence of the shock positions relative to the potential minima is due to the tendency that stronger shocks form farther downstream. This causes a systematic variation of the perpendicular Mach number, with radius and makes the pitch angle of the gaseous arms smaller than that of the stellar arms, which supports the prediction of the density-wave theory, independently. However, some observations still give controversial results which show similar pitch angles at wavelengths, and there is no statistical study comparing observations and numerical models directly. By analyzing optical image of disk galaxies in the Carnegie-Irvine Galaxy Survey (CGS), I measured the physical values of stellar and gaseous arms such as their strength, length, and pitch angles. For direct comparison with numerical results, I analyzed more than 30 additional numerical models with varying the initial parameters in model galaxies. In this talk, I will present results both of observational and numerical samples and discuss the physical properties of spiral structures based on the density-wave theory.

  • PDF

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

Near-Infrared Imaging Spectroscopic Survey in Space

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Song, Yong-Seon;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.54.3-54.3
    • /
    • 2015
  • To probe the star formation in local and early Universe, the NISS with a capability of imaging spectroscopy in the near-infrared is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with 15cm aperture was optimized to obtain a wide field of view (FoV) of $2deg.{\times}2deg.$ as well as a wide spectral coverage from 0.9 to $3.8{\mu}m$. The opto-mechanical structure was designed to be safe enough to endure in both the launching condition and the space environment. The dewar will operate $1k{\times}1k$ infrared sensor at 80K stage. The NISS will be launched in 2017 and explore the large areal near-infrared sky up to $200deg.^2$ in order to get both spatial and spectral information for astronomical objects. As an extension of the NISS, KASI is planning to participate in a new small space mission together with NASA. The promising candidate, SPHEREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is an all-sky survey satellite designed to reveal the origin of the Universe and water in the planetary systems and to explore the evolution of galaxies. Though the survey concept is similar to that of the NISS, the SPHEREx will perform the first near-infrared all-sky imaging spectroscopic survey with the wider spectral range from 0.7 to $5{\mu}m$ and the wider FoV of $3.5deg.{\times}7deg.$ Here, we report the current status of the NISS and introduce new mission for the near-infrared imaging spectroscopic survey.

  • PDF

Identification of MgII Absorbers in the Quasar Lines of Sight

  • Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.75.3-75.3
    • /
    • 2015
  • Large area infrared surveys are often accompanied with follow-up optical spectroscopic surveys that has a significant legacy value even for other areas of research. Using these spectral database, we have performed a search for MgII absorption lines in the optical spectrum of background quasar. Over the ~4deg2 of AKARI North Ecliptic Pole survey field and Spitzer First Look Survey field, 18 and 16 MgII absorber systems are identified respectively. The redshift range for the background quasars was 1.0<$z_{qso}$<3.4, while the redshift range for the absorber was 0.6<$z_{abs}$<1.6. Galaxies responsible for MgII absorptions are identified in the deep optical images (CFHT r-band), yet the identification still remains ambiguous for 60% of the systems due to the limited image depth and the source crowdedness. The impact parameter ranges 20-60kpc, and the rest-frame equivalent width of MgII absorption ranges $0.7-4{\AA}$. The most critical part in the identification of MgII absorber galaxies is the existence of deep optical images in addition to the high S/N quasar spectrum with R>3000.

  • PDF

Galaxy Clusters at High Redshift

  • Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2015
  • Hierarchical galaxy formation models under LCDM cosmology predict that the most massive structures such as galaxy clusters (M > $10^{14}M_{\odot}$) appear late (z < 1) in the history of the universe through hierarchical clustering of small objects. Galaxy formation is also expected to be accelerated in overdense environments, with the star formation rate-density relation to be established at z ~ 2. In this talk, we present our search of massive structures of galaxies at 0.7 < z < 4, using the data from GOODS survey and our own imaging survey, Infrared Medium-deep Survey (IMS). From these studies, we find that there are excess of massive structures of galaxies at z > 2 in comparison to the Millennium simulation data. At 1 < z < 2, the number density of massive structures is consistent with the simulation data, but the star formation history is more or less identical between field and cluster. The star formation quenching process is dominated by internal process (stellar mass). The environmental effect becomes important only at z < 1, which contributes to create the well known star formation-density relation in the local universe. Our results suggest that galaxy formation models under LCDM cosmology may require further refinements to match the observation.

  • PDF

LARGE-SCALE CLUSTERING OF GALAXIES IN THE CFA SURVEY

  • Park, Chang-Bom
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.9-17
    • /
    • 1992
  • The power spectrum of the galaxy distribution is accurately measured up to wavelengths over $100\;h^{-1}$ Mpc from the CfA 1 and 2 catalogs. We find that our results agree with power spectra calculated by others from smaller samples of optical, radio and infrared galaxies. The power spectrum of an open CDM model (${\Omega}h$ = 0.2 and ${\delta}_8$ = 1; see below for definitions) best approximates the observed power spectrum. The power spectrum of the standard COM model (${\Omega}h$ = 0.5 and ${\delta}_8$ = 1) is inconsistent with the observed one at the 99% confidence level. Our best estimation of the corresponding correlation function in real space is ${\xi}(r)\;=\;(r/6.2h^{-1}Mpc)^{-1.8}$ for r < $20h^{-1}$ Mpc.

  • PDF

Ionized gas outflows in z~2 WISE-selected Hot Dust Obscured Galaxies

  • Jun, Hyunsung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2018
  • The Wide-field Infrared Survey Explorer (WISE) mission has been efficient in selecting Active Galactic Nuclei (AGN) with high luminosities and large obscuration. According to the merger driven AGN powering scenarios, luminous and obscured AGN are in a stage where they go through feeding of gas accretion into the central black hole, and feedback to the host galaxy through outflows. We report the rest-frame UV-optical spectra of 11 Hot Dust Obscured Galaxies (Hot DOGs) at z~2, WISE color-selected to be extremely reddened AGN. A fraction of the targets show blueshifted and broadened [OIII] profiles indicative of ionized gas outflows. We present the occurrence and strength of the outflows, and discuss what impact these AGN activity could give on their hosts.

  • PDF