• Title/Summary/Keyword: infrared%3A telescope

Search Result 103, Processing Time 0.032 seconds

PRELIMINARY OPTICAL DESIGN OF MIRIS, MAIN PAYLOAD OF STSAT-3 (과학기술위성3호 주탑재체 MIRIS의 광학계 시험설계)

  • Yuk, I.S.;Jin, H.;Lee, S.;Park, Y.S.;Lee, D.H.;Nam, U.W.;Park, J.H.;Han, W.Y.;Lee, J.W.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • We have preliminarily designed two infrared optical systems of the multi-purpose infrared camera system (MIRIS) which is the main payload of STSAT-3. Each optical system consists of a Cassegrain telescope, a field lens and a 1:1 re-imaging lens system that is essential for providing a cold stop. The Cassegrain telescope is identical for both of two infrared cameras, but the field correction lens and re-imaging lens system are different from each other because of different bands of wavelength. The effective aperture size is 100mm in diameter and the focal ratio is f/5. The total length of the optical system is 300mm and the position of the cold stop is 25mm from the detector focal plane. The RMS spot size is smaller than $40{\mu}m$ over the whole detector plane.

DEEP INFRARED SURVEYS OF STAR FORMING REGIONS IN THE MWG AND LMC

  • NAKAJIMA YASUSHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.173-174
    • /
    • 2005
  • On behalf of the IRSF/SIRIUS group, I introduce some recent results from our deep near-infrared surveys (J, Hand Ks bands, limiting magnitude of Ks=17) toward star forming regions in the Milky Way Galaxy (MWG) and Large Magellanic Cloud (LMC) with the near-infrared camera SIRIUS. We discovered a rich population of low-mass young stellar objects associated with the W3 and NGC 7538 regions in the MWG based on the near-infrared colors arid magnitudes. The high sensitivity of our survey enables us to detect intermediate-mass pre-main sequence stars, i.e. HAEBE stars, even in the LMC. We detected many HAEBE candidate stars in the N159/N160 complex star forming region in the LMC with the IRSF 1.4-m telescope. Spatial distributions of the young stellar objects indicate the sequential cluster formation in each star forming region in the complex and large scale (a few ${\times}$ 100 pc) sequential cluster formation over the entire complex.

Design of Hardware Interface for the Otto Struve 2.1m Telescope

  • Oh, Hee-Young;Park, Won-Kee;choi, Chang-Su;Kim, Eun-Bin;Nguyen, Huynh Anh Le;Lim, Ju-Hee;Jeong, Hyeon-Ju;Pak, Soo-Jong;Im, Myung-Shin
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.25.3-25.3
    • /
    • 2009
  • To search for the quasars at z > 7 in early universe, we are developing a optical camera which has a $1k\times1k$ deep depletion CCD chip, with later planned upgrade to HAWAII-2RG infrared array. We are going to attach the camera to the cassegrain focus of Otto Struve 2.1m telescope at McDonald observatory of University of Texas at Austin, USA. We present the design of a hardware interface to attach the CCD camera to the telescope. It consists of focal reducer, filter wheel, and guiding camera. Focal reducer is needed to reduce the long f-ratio (f/13.7) down to about 4 for wide field of view. The guiding camera design is based on that of DIAFI offset guider which developed for the McDonald 2.7m telescope.

  • PDF

Optomechanical Design and Structural Analysis of Linear Astigmatism Free - Three Mirror System Telescope for CubeSat and Unmanned Aerial Vehicle

  • Han, Jimin;Lee, Sunwoo;Park, Woojin;Moon, Bongkon;Kim, Geon Hee;Lee, Dae-Hee;Kim, Dae Wook;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.38.3-38.3
    • /
    • 2021
  • We are developing an optomechanical design of infrared telescope for the CubeSat and Unmanned Aerial Vehicle (UAV) which adapts the Linear Astigmatism Free- Three Mirror System in the confocal off-axis condition. The small entrance pupil (diameter of 40 mm) and the fast telescope (f-number of 1.9) can survey large areas. The telescope structure consists of three mirror modules and a sensor module, which are assembled on the base frame. The mirror structure has duplex layers to minimize a surface deformation and physical size of a mirror mount. All the optomechanical parts and three freeform mirrors are made from the same material, i.e., aluminum 6061-T6. The Coefficient of Thermal Expansion matching single material structure makes the imaging performance to be independent of the thermal expansion. We investigated structural characteristics against external loads through Finite Element Analysis. We confirmed the mirror surface distortion by the gravity and screw tightening, and the overall contraction/expansion following the external temperature environment change (from -30℃ to +30℃).

  • PDF

Korean Participation in All-sky Infrared Spectro-Photomeric Survey Mission, SPHEREx

  • Jeong, Woong-Seob;Yang, Yujin;Park, Sung-Joon;Pyo, Jeonghyun;Jo, Youngsoo;Kim, Il-Joong;Ko, Jongwan;Hwang, Hoseong;Song, Yong-Seon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.45.3-45.3
    • /
    • 2019
  • Since the high throughput for diffuse objects and the wide-area survey even with a small telescope can be achieved in space, infrared (IR) obervations have been tried through small missions in Korea. Based upon the previous technical development for infrared spectro-photometric instrument, NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1, we participated in the all-sky infrared spectro-photometric survey mission, SPHEREx. The SPEHREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) was selected as the NASA MIDEX (Medium-class Explorer) mission (PI Institute: Caltech) in this February. As an international partner, KASI will take part in the hardware development, the operation and the science for the SPHEREx. The SPHEREx will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. For the purpose of the all-sky survey, the SPHEREx is designed to have a wide FoV of 3.5 × 11.3 deg. as well as wide spectral range from 0.75 to 5.0㎛. Here, we report the status of the SPHEREx project and the progress in the Korean participation.

  • PDF

SEARCH FOR DEBRIS DISKS BY AKARI AND IRSF

  • Takeuchi, Nami;Ishihara, Daisuke;Kaneda, Hidehiro;Oyabu, Shinki;Kobayashi, Hiroshi;Nagayama, Takahiro;Onaka, Takashi;Fujiwara, Hideaki
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.73-75
    • /
    • 2017
  • Debris disks are important observational clues to understanding on-going planetary system formation. They are usually identified by significant mid-infrared excess on top of the photospheric emission of a central star on the basis of prediction from J-, H-, and Ks-band fluxes and the stellar model spectra. For bright stars, 2MASS near-infrared fluxes suffer large uncertainties due to the near-infrared camera saturation. Therefore we have performed follow-up observations with the IRSF 1.4 m near-infrared telescope located in South Africa to obtain accurate J-, H-, and Ks-band fluxes of the central stars. Among 754 main-sequence stars which are detected in the AKARI $18{\mu}m$ band, we have performed photometry for 325 stars with IRSF. As a result, we have successfully improved the flux accuracy of the central stars from 9.2 % to 0.5 % on average. Using this dataset, we have detected $18{\mu}m$ excess emission from 57 stars in our samples with a $3{\sigma}$ level. We find that some of them have high ratios of the excess to the photospheric emission even around very old stars, which cannot be explained by the current planet-formation theories.

Infrared-Visible Photometric Analyses of Core-collapse Supernovae and Supernova Dust Formation

  • Pak, Mina;Moon, Dae-Sik;KIM, Sang Chul;Salbi, Pegah;Gal-Yam, Avishay;Lee, Ho-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.42.3-43
    • /
    • 2016
  • We present multiband photometric analyses of 10 core-collapse supernovae in the near-infrared and visible wavebands. Our infrared data is from observations of the supernovae using the Wide Field Infrared Camera at the Palomar 5-m telescope as part of the Caltech Core-Collapse Supernova Program, while we obtain the visible data from publicly available data base. By fitting the broadband spectral energy distribution with a black body and, when necessary, modified black body component, we estimate physical parameters of the supernovae more accurately and also conduct a systematic investigation of when the supernovae show any indication of dust formation.

  • PDF

AN ANALYSIS OF INFRARED IMAGES OF JUPITER IMPACTED BY P/SHOEMAKER-LEVY 9

  • KIM YONG HA;SUNG KIYUN;KIM SANG JOON;COCHRAN W. D.;LESTER D. F.;TRAFTON L.;CLARK B. E.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.245-253
    • /
    • 1996
  • We have analyzed infrared (IR) images of Jupiter which was observed at the McDonald Observatory, Texas, U.S.A., during the P/SHoemaker-LEvy 9 (SL9) impact period and about one week after the last impact. The IR images were obtained on the 2.7m telescope using a NICMOS array with filters to isolate the $1.5{\mu}m\;NH_3\; band,\;the\;2.3{\mu}m\;CH_4\;band,\;the\;2.12{\mu}m\;H_2\;S(0)$ pressure-induced absorption, and the continua at $1.58{\mu}m\;and\;2.0{\mu}m$ (short K-band). All images except those with the $1.58{\mu}m$ continuum filter show bright impact sites against the relatively dark Jovian disk near the impact latitude of about $45^{\circ}$ S. This implies that dusts originated from the impacts reflect the solar radiation at high altitudes before absorbed by stratospheric $CH_4,\;NH_3 \;or\;H_2$. The impact sites observed with the $2.3{\mu}m$ filter are conspicuously bright against a very dark background. The morphology of impact sites, G, L, and H at 2.3 and $2.12{\mu}m$ filters shows clearly an asymmetric structure toward the incident direction of the comet fragments, in agreement with the studies of visible impact images obtained with the Hubble Space Telescope. Comparisons of reflectances of G, L, and H sites with simple radiative transfer models suggest that optically thick dust layers were formed at high altitudes at which methane absorption attenuates incoming sunlight only by about $1\%$. The dust layers in these sites seem to form at about the same altitude regardless of the magnitude of the impacts, but they appear to descend gradually after the impacts. The dust layers have optical depths of 2-5, according to the models.

  • PDF

NEAR-INFRARED OBSERVATIONS OF A STAR FORMING REGION IN THE GALACTIC CENTER (우리은하 중심의 별탄생영역 근적외선 관측)

  • Pak, Soo-Jong;Lee, Sung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.10a
    • /
    • pp.177-180
    • /
    • 2006
  • We observed $2.1218{\mu}m$ $H_2$ 1-0 S(1) emission from H II region A, which is located just next to Sgr A East and one of the nearest star forming regions to the Gatactic center. Cooled Grating Spectrometer 4 (CGS4) at the 3.8 m United Kingdom Infrared Telescope (UKIRT) was used with aa echelle grating at a velocity resolution of ${\sim}$ 18km s^{-1}$ and an angular resolution of ${\sim}$ 2 arcsec. Comparing the distributions and kinematics of the observed $H_2$ emission with radio continuum and $NH_3$ emission, we find no evidence that this H II region is interacting with Sgr A East. This conclusion supports that the star formation in this region has not been stimulated by the blast wave of Sgr A East.

  • PDF

Near-infrared Spectroscopy of Metal-enriched Supernova Ejecta in Cassiopeia A

  • Lee, Yong-Hyun;Koo, Bon-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.44.4-44.4
    • /
    • 2019
  • The supernova remnant Cassiopeia A (Cas A) provides a unique opportunity to observe the fine details of the explosion of core-collapse supernova (SN). Previous optical and near-infrared (NIR) observations of Cas A have shown that the spatial distribution of the metal-enriched SN ejecta is very complicated, indicating that the SN explosion should have been asymmetric and turbulent, especially near the core. Recently, we obtained a long-exposure (~10 hr) image of Cas A by using the UKIRT 3.6-m telescope with a narrow-band filter centered at [Fe II] 1.644 um emission. This 'deep [Fe II] image' provides an unprecedented panoramic view of Cas A, revealing the distribution of dense SN ejecta over the entire remnant. We have carried out NIR multi-object spectroscopic observations of the dense ejecta knots in the northeastern (NE) and eastern (E) outer regions of the remnant using the MMIRS attached on the MMT 6.5-m telescope. A total of 67 ejecta knots are detected. By analyzing their spectra, we have found that the knots in the NE area show strong [S II]/[S III] and [Fe II] lines but little or no [P II] line, while those in the E outer region show strong [Fe II] lines but weak [S II]/[S III] lines. In this talk, we present the preliminary results of our NIR spectroscopic observations and discuss the implications.

  • PDF