• 제목/요약/키워드: infrared: telescope

검색결과 262건 처리시간 0.034초

Data reduction package for the Immersion Grating Infrared Spectrograph (IGRINS)

  • Sim, Chae Kyung;Le, Huynh Anh Nguyen;Pak, Soojong;Lee, Hye-In;Kang, Wonseok;Chun, Moo-Young;Jeong, Ueejeong;Yuk, In-Soo;Kim, Kang-Min;Park, Chan;Jaffe, Daniel T.;Pavel, Michael
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.84.1-84.1
    • /
    • 2013
  • We present a python-based data reduction pipeline for the Immersion GRating INfrared Spectrograph (IGRINS). IGRINS covers the complete H- and K-bands in a single exposure with a spectral resolving power of greater than 40,000. IGRINS is designed to be compatible with telescopes of diameters ranging from 2.7-m (the Harlan J. Smith telescope at McDonald Observatory) to 8-10m. Commissioning and initial operation will be on the 2.7-m telescope from late 2013. The pipeline package is a part of the IGRINS software and designed to be compatible with other package that maneuvers the spectrograph during the observation. This package provides high-quality spectra with minimal human intervention and the processes of order extraction, distortion correction, and wavelength calibration can be automatically carried out using the predefined functions (e.g. echellogram mapping and 2D transform). Since the IGRINS is a prototype of the Giant Magellan Telescope Near-Infrared Spectrometer (GMTNIRS), this pipeline will be extended to the GMTNIRS software.

  • PDF

Thermal Analysis of MIRIS Space Observation Camera for Verification of Passive Cooling

  • Lee, Duk-Hang;Han, Won-Yong;Moon, Bong-Kon;Park, Young-Sik;Jeong, Woong-Seob;Park, Kwi-Jong;Lee, Dae-Hee;Pyo, Jeong-Hyun;Kim, Il-Joong;Kim, Min-Gyu;Matsumoto, Toshio
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권3호
    • /
    • pp.305-313
    • /
    • 2012
  • We conducted thermal analyses and cooling tests of the space observation camera (SOC) of the multi-purpose infrared imaging system (MIRIS) to verify passive cooling. The thermal analyses were conducted with NX 7.0 TMG for two cases of attitude of the MIRIS: for the worst hot case and normal case. Through the thermal analyses of the flight model, it was found that even in the worst case the telescope could be cooled to less than $206^{\circ}K$. This is similar to the results of the passive cooling test (${\sim}200.2^{\circ}K$). For the normal attitude case of the analysis, on the other hand, the SOC telescope was cooled to about $160^{\circ}K$ in 10 days. Based on the results of these analyses and the test, it was determined that the telescope of the MIRIS SOC could be successfully cooled to below $200^{\circ}K$ with passive cooling. The SOC is, therefore, expected to have optimal performance under cooled conditions in orbit.

1.6 M SOLAR TELESCOPE IN BIG BEAR - THE NST

  • GOODE PHILIP R.;DENKER CARSTEN.J.;DIDKOVSKY LEONID I.;KUHN J. R.;WANG HAIMIN
    • 천문학회지
    • /
    • 제36권spc1호
    • /
    • pp.125-133
    • /
    • 2003
  • New Jersey Institute of Technology (NJIT), in collaboration with the University of Hawaii (UH), is upgrading Big Bear Solar Observatory (BBSO) by replacing its principal, 65 cm aperture telescope with a modern, off-axis 1.6 m clear aperture instrument from a 1.7 m blank. The new telescope offers a significant incremental improvement in ground-based infrared and high angular resolution capabilities, and enhances our continuing program to understand photospheric magneto-convection and chromospheric dynamics. These are the drivers for what is broadly called space weather - an important problem, which impacts human technologies and life on earth. This New Solar Telescope (NST) will use the existing BBSO pedestal, pier and observatory building, which will be modified to accept the larger open telescope structure. It will be operated together with our 10 inch (for larger field-of-view vector magnetograms, Ca II K and Ha observations) and Singer-Link (full disk H$\alpha$, Ca II K and white light) synoptic telescopes. The NST optical and software control design will be similar to the existing SOLARC (UH) and the planned Advanced Technology Solar Telescope (ATST) facility led by the National Solar Observatory (NSO) - all three are off-axis designs. The NST will be available to guest observers and will continue BBSO's open data policy. The polishing of the primary will be done in partnership with the University of Arizona Mirror Lab, where their proof-of-concept for figuring 8 m pieces of 20 m nighttime telescopes will be the NST's primary mirror. We plan for the NST's first light in late 2005. This new telescope will be the largest aperture solar telescope, and the largest aperture off-axis telescope, located in one of the best observing sites. It will enable new, cutting edge science. The scientific results will be extremely important to space weather and global climate change research.

SEARCH FOR DEBRIS DISKS BY AKARI AND IRSF

  • Takeuchi, Nami;Ishihara, Daisuke;Kaneda, Hidehiro;Oyabu, Shinki;Kobayashi, Hiroshi;Nagayama, Takahiro;Onaka, Takashi;Fujiwara, Hideaki
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.73-75
    • /
    • 2017
  • Debris disks are important observational clues to understanding on-going planetary system formation. They are usually identified by significant mid-infrared excess on top of the photospheric emission of a central star on the basis of prediction from J-, H-, and Ks-band fluxes and the stellar model spectra. For bright stars, 2MASS near-infrared fluxes suffer large uncertainties due to the near-infrared camera saturation. Therefore we have performed follow-up observations with the IRSF 1.4 m near-infrared telescope located in South Africa to obtain accurate J-, H-, and Ks-band fluxes of the central stars. Among 754 main-sequence stars which are detected in the AKARI $18{\mu}m$ band, we have performed photometry for 325 stars with IRSF. As a result, we have successfully improved the flux accuracy of the central stars from 9.2 % to 0.5 % on average. Using this dataset, we have detected $18{\mu}m$ excess emission from 57 stars in our samples with a $3{\sigma}$ level. We find that some of them have high ratios of the excess to the photospheric emission even around very old stars, which cannot be explained by the current planet-formation theories.

High-resolution optical and near-infrared spectroscopic study of 2MASS J06593158-0405277

  • Park, Sunkyung;Lee, Jeong-Eun;Pyo, Tae-Soo;Sung, Hyun-Il;Lee, Sang-Gak;Kang, Wonseok;Oh, Hyung-Il;Yoon, Tae Seog;Mace, Gregory N.;Jaffe, Daniel T.;Yoon, Sung-Yong;Green, Joel D.
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.50.2-50.2
    • /
    • 2019
  • We present the results of high-resolution (R ≥ 30,000) optical and near-infrared spectroscopic monitoring observations of a FU Orionis-type object, 2MASS J06593158-0405277. We have monitored 2MASS J06593158-0405277 with the Bohyunsan Optical Echelle Spectrograph (BOES) and the Immersion GRating INfrared Spectrograph (IGRINS) since December 2014. Various features produced by wind, disk, and outflow/jet were detected. The wind features varied over time and disappeared about a year after the outburst occurred. The double-peaked line profiles were detected in the optical and near-infrared, and the line widths decrease with increasing wavelength. The disk features in the optical spectra are fit well with G2-type or G5-type stellar spectra convolved with a disk rotational profile of about 45 km s-1, which corresponds to a disk radius of about 71 Rfor a central mass of 0.75 M. Disk features in near-infrared spectra are fit well with a K1-type stellar spectrum convolved with a disk rotational profile of about 35 km s-1, which corresponds to a disk radius of about 117 R for a central mass of 0.75 M. We also detected [S II] and H2 emission lines, which are rarely found in FUors but are usually found in the earlier stage of young stellar objects. Therefore, we suggest that 2MASS J06593158-0405277 is in the relatively earlier part of Class II stage.

  • PDF

DEEP INFRARED SURVEYS OF STAR FORMING REGIONS IN THE MWG AND LMC

  • NAKAJIMA YASUSHI
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.173-174
    • /
    • 2005
  • On behalf of the IRSF/SIRIUS group, I introduce some recent results from our deep near-infrared surveys (J, Hand Ks bands, limiting magnitude of Ks=17) toward star forming regions in the Milky Way Galaxy (MWG) and Large Magellanic Cloud (LMC) with the near-infrared camera SIRIUS. We discovered a rich population of low-mass young stellar objects associated with the W3 and NGC 7538 regions in the MWG based on the near-infrared colors arid magnitudes. The high sensitivity of our survey enables us to detect intermediate-mass pre-main sequence stars, i.e. HAEBE stars, even in the LMC. We detected many HAEBE candidate stars in the N159/N160 complex star forming region in the LMC with the IRSF 1.4-m telescope. Spatial distributions of the young stellar objects indicate the sequential cluster formation in each star forming region in the complex and large scale (a few ${\times}$ 100 pc) sequential cluster formation over the entire complex.

Low Resolution Near-Infrared Stellar Spectra Observed by CIBER

  • Kim, MinGyu;Lee, Hyung Mok
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.76.2-76.2
    • /
    • 2016
  • We present near-infrared (0.8 - 1.8 microns) spectra of 63 bright (J_mag < 10) stars observed with Low Resolution Spectrometer (LRS) onboard the rocket-borne Cosmic Infrared Background Experiment (CIBER). Two Micron All Sky Survey (2MASS) photometry information is used to find cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of observed stars by comparing with spectral templates from the Infrared Telescope Facility (IRTF) library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines. As our observations are performed above the Earth's atmosphere, our spectra are free from telluric contamination. Including HST/NICMOS and Cassini/VIMS, the spectral coverage has rarely been achieved in space, and the methods developed here can inform statistical studies with future low-resolution spectral measurements such as GAIA photometric and radial velocity spectrometer.

  • PDF

Photometry of the long-period eclipsing polar V1309 Ori

  • Kim, Y.;K. Reinsch;Y. B. Jeon
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.24-24
    • /
    • 2003
  • We present preliminary results about the quasi-simultaneous near-infrared light curves of the long-period eclipsing polar V1309 Ori in the J, H, K', and K bands with almost complete orbital phase coverage using the CFHT-IR camera. The optical light curve in the V and R bands, obtained by 1.8m Telescope at BOAO, will be also presented. The shape and the amplitude of the orbital light curve change significantly from optical to near-infrared wavelengths.

  • PDF

THE LATEST RESULTS FROM SUBARU TELESCOPE

  • HAYASHI MASAHIKO
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.73-75
    • /
    • 2005
  • The latest scientific highlights obtained with the Subaru telescope are given together with its current status and on-going instrumentation. We have been successfully operating the telescope and 8 observatory instruments (including an adaptive optics system) since January 1999, when the first light was accomplished. Open-use of Subaru began in December 2000. Subaru has a unique capability of its prime focus among other 8-10 meter class telescopes and has an excellent imaging performance as a result of its sophisticated active optics combined with the high stability of the sky at Mauna Kea. Scientific highlights are given on the discoveries of the most distant galaxies, spiral structure on a protoplanetary disk around AB Aur, and planetesimal belts in the debris disk around $\beta$ Pic. Brief summaries are given for three new instruments: the Multi-Object Infrared Camera and Spectrograph (MOIRCS), 188 element adaptive optics system, and Fiber Multi-Object Spectrograph (FMOS)

차세대 우주망원경 : 적외선 우주망원경의 제작과 활용 (Post Hubble space telescope : Infrared space telescope)

  • 차승훈;박수종
    • 한국지구과학회:학술대회논문집
    • /
    • 한국지구과학회 2005년도 추계학술발표회 논문집
    • /
    • pp.187-189
    • /
    • 2005
  • 1990년 궤도에 진입한 허블우주망원경(이하 HST)이 수년내에 그 수명을 다하여 임무를 마치게 되면, 2007에서 2011년을 전후로 하여 미국, 일본과 유럽 연합은 각각 차세대 우주 망원경을 발사할 예정이다. 2007년 유럽연합의 Herschel, 2011년 미국의 JWST (James Webb Space Telescope), 그리고 2012년 일본의 SPICA가 차례로 발사되어 예정된 관측을 수행하게 된다. 기존의 HST가 가시광선 영역과 근자외선 영역을 주로 관측 했던 것과는 달리 이들 차세대 우주망원경들은 주로 근적외선에서 원적외선 영역까지를 관측하는 것을 주된 임무로 하고 있다. 본 연구에서는 한국천문학자들이 이들 차세대 망원경의 제작에 참여하는 부분에 대해 소개하고, 이들 망원경을 활용한 적외선 천문학, 특히 항성의 형성과 관련된 부분에 관하여 소개하고자 한다.

  • PDF