• Title/Summary/Keyword: infrared: telescope

Search Result 262, Processing Time 0.043 seconds

Radio Observation of L1521F using HCN (J=1-0) Line (L1521F의 HCN(J=1-0) 분자선 전파 관측)

  • Sohn, Jung-Joo;Lee, Chang-Won
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.370-377
    • /
    • 2010
  • In this study, we investigated the kinematical properties of the L1521F-IRS in Taurus region using HCN (J=1-0) molecular line. The high resolution mapping has carried out by $5{\times}5$ point observations covering $3.7'{\times}3.7'$ area using a 12-m telescope of Arizona Radio Observatory in Tucsan, USA. L1521F which harbors the faint infrared L1521F-IRS, displayed a strong central concentration of integrated intensity in HCN without serious molecular depletion. It showed a symmetric kinematical structure with the opposite infall motion in either side of the central cores. It is a direct evidence of bipolar outflows in the core of L1521F.

SPATIAL DISTRIBUTION OF STARS AROUND SIX METAL-POOR GLOBULAR CLUSTERS IN THE GALACTIC BULGE

  • Chang, Cho-Rhong;Kim, Jae-Woo;Matsunaga, Noriyuki;Han, Mihwa;Ko, Jongwan;Chun, Sang-Hyun;Kang, Minhee;Sohn, Young-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.6
    • /
    • pp.203-224
    • /
    • 2013
  • Wide-field $JHK_s$ images obtained with the SIRIUS near-infrared camera of the IRSF 1.4m telescope are used to examine the tidal structures of the spatial stellar configuration around six metal-poor ([Fe/H]< -1.0) globular clusters located within 3 kpc from the Galactic center. The radial surface density profiles are obtained from the surface photometry of the cluster images and the star counting for the photometric data. For the star counting, candidates of cluster member stars are selected with an filtering algorithm in color-magnitude diagrams. We find that the six target clusters show tidal overdensity features in the radial surface density profiles. There is a break inside the tidal radius for each cluster, and the profile in the outer overdensity region is characterized by a power law. Two-dimensional density maps of all the clusters show distorted asymmetric stellar configurations in the outer region. In five out of the six target clusters, the overdensity features are likely to be associated with the effects of the Galaxy dynamical interaction and the cluster space motions. The observed tidal configurations of stars suggest that several metal-poor clusters in the Galactic bulge are possibly surviving remnants of mergers to build the old stellar system of the Galactic bulge.

Status of the MIRIS Data Reduction and Analysis

  • Pyo, Jeonghyun;Kim, Il-Joong;Jeong, Woong-Seob;Lee, Dae-Hee;Moon, Bongkon;Park, Youngsik;Park, Sung-Joon;Park, Won-Kee;Lee, Duk-Hang;Nam, Uk-Won;Han, Wonyong;Seon, Kwang-Il;Matsumoto, Toshio;Kim, Min Gyu;Lee, Hyung Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.37.2-37.2
    • /
    • 2016
  • MIRIS (Multi-purpose InfraRed Imaging System) is a compact near-infrared space telescope launched in 2013 November as the main payload of STSAT-3 (Science and Technology Satellite 3). The main missions of MIRIS are 1) the $Pa{\alpha}$ line survey along the Galactic plane, 2) the large area (${\sim}10^{\circ}{\times}10^{\circ}$) surveys of three pole regions (north ecliptic pole, and north and south Galactic poles), and 3) the monitoring observations toward the north ecliptic pole. MIRIS started observations for the main missions in 2014 March and finished in 2015 May. While MIRIS was taking the observation data and afterward, we are continuing the analysis of data. Based on the results from analysis, the data reduction pipeline has been revised. In this talk, we introduce the revised version of the MIRIS data reduction pipeline and the status of the data reduction and anlaysis.

  • PDF

Flight Model Development of the MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Moon, Bong-Kon;Park, Kwi-Jong;Park, Sung-Joon;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Park, Jang-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.65.1-65.1
    • /
    • 2012
  • MIRIS (Multipurpose Infra-Red Imaging System) is the first Korean Infrared Space Telescope developed by KASI (Korea Astronomy and Space Science Institute), and is the main payload of STSAT-3 (Science and Technology Satellite-3). The FM (fight model) of MIRIS has been recently completed, and various performance tests have been made to measure system parameters such as readout noise, system gain, linearity, and dark current. Final thermal-vacumm test of the MIRIS and the vibration test of the electronics box have been performed. Band response tests showed good agreement with the initial design requirements. No significant dark difference was measured within the expected temperature variation range during observation in orbit. Using Pa-alpha band from a uniform source, the readout noise and system gain were measured by mean variance test. To obtain uniform flat image, flat fielding tests were made for each band, and the data will be compared to that obtained in orbit for calibration. The final version of MIRIS FM will be delivered in March, and it will be integrated into the satellite system for the AIT (Assembly Integration, Test) procedure. The launch of MIRIS is expected in November 2012.

  • PDF

The black hole mass-stellar velocity relation of the present-day active galaxies

  • Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.79-79
    • /
    • 2010
  • To investigate whether the present-day active galaxies follow the same black hole mass vs. stellar velocity dispersion (MBH-$\sigma*$) relation as quiescent galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which black hole masses were measured via reverberation mapping. We measured stellar velocity dispersions from high S/N optical spectra centered on the Ca II triplet region (${\sim}8500^{\circ}A$), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, we used high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph and laser-guide star adaptive optics at the Keck-II Telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation MBH in the range of black hole mass 106< MBH /$M{\odot}$ < 109,toobtainthefirstreverberationmappingconstraintsontheslopeandintrinsicscatteroftheMBH- $\sigma*$ relation of active galaxies. Assuming a constant virial coefficient f for the reverberation MBH, we find a slope ${\beta}=3.55{\pm}0.60$ and the intrinsic scatter ${\sigma}int=0.43{\pm}0.08$ dex in the relation log (MBH/M${\odot}$)=$\alpha+\beta$ log(${\sigma}*$/200 km s-1), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the MBH - $\sigma*$ relation of quiescent galaxies; using the quiescent MBH - $\sigma*$ relation determined by Gultekin et al. we find log f=0.72+0.09 (or $0.71{\pm}0.10$) with an intrinsic scatter of $0.44{\pm}0.07$ (or 0.46+0.07) dex. No correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the uncertainty in black hole mass determination using reverberation mapping, and therefore also in single-epoch spectroscopic estimates of black hole masses in active galaxies.

  • PDF

Identifying the VeLLOs in the Spitzer Gould's Belt Survey

  • Kim, Mi-Ryang;Lee, Chang-Won;Dunham, M.;Allen, L.;Myers, Philip C.;Evans, N.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.67.2-67.2
    • /
    • 2010
  • We present results of searching for the Very Low Luminosity Objects (VeLLOs; internal luminosity : $L_{int}$ < $0.1(d/140pc)^2\;L\odot$) in the Gould's Belt clouds using observations from 3.6 to 70 micron by the Spitzer Space Telescope. The clouds are California, Chamaeleon I, III, Musca, Lupus V, VI, Scorpius, Serpens, Corona Australis, Cepheus, and IC 5146 having the properties of active low-mass star-forming such as the Taurus cloud. The observing sensitivity of the Spitzer data is estimated to be about $L_{int}\;\geq\;5\times10^{-3}(d/140pc)^2\;L\odot$, a factor of 20 better than that of the Infrared Astronomical Satellite (IRAS). The observing data were processed by the c2d Legacy pipeline. As the criteria to select the VeLLOs, we slightly modified previous ones by Dunham et al. The most important criterion is a flux density at 70 micron that is directly converted to the internal luminosity. Also, we used additional criteria to remove the contamination of evolved stars and extragalaxies which have colors or SEDs very similar to YSOs. We identified a total of 64 new embedded VeLLO candidates with $L_{int}$ < $0.1(d/140pc)^2\;L\odot$, consisting of 8 in California, 15 in Chamaeleon-Musca, 13 in Scorpius-Lupus, 20 in Serpens, 3 in Corona Australis, 3 in Cepheus, and 2 in IC 5146. The classification of the spectral index (${\alpha}$) fitted to the shape of the Ks-24 micron SEDs shows most of VeLLO candidates (89%) are in types of Class I and Flat spectrum. We plot various diagrams based on their 2MASS-Spitzer bands colors and magnitudes to discuss properties of the VeLLOs. This search will lead us new adventure toward a future systematic study of the VeLLOs.

  • PDF

Multi-wavelength Study of Blazars Using Variability as a Tool

  • Baliyan, Kiran S.;Kaur, Navpreet;Chandra, Sunil;Sameer, Sameer;Ganesh, Shashikiran
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2016
  • Active galactic nuclei (AGN) are too compact to be resolved by any existing optical telescope facility, making it difficult to understand their structure and the emission processes responsible for their huge energy output. However, variability, one of their characteristic properties, provides a tool to probe the inner regions of AGN. Blazars are the best candidates for such a study, and hence a considerable amount of effort is being made to investigate variability in these sources across the electromagnetic spectrum. Here, using the Mt. Abu infrared observatory (MIRO) blazar monitoring program, we present intra-night, inter-night, and long term aspects of the variability in S5 0716+71, 3C66A, and OJ 287. These stars show significant variability on short (a few tens of mins, to a few hours, to a few days) to long term (months to years) timescales. Based on the light travel time argument, the shortest variability timescales (micro-variability) provide upper limits to the size of the emission region. While S5 0716 shows a very high duty cycle of variability (> 80 %), 3C66A shows a much lower intra day variability (IDV) duty cycle (< 20 %). All three show rapid variations within 2.5 to 3.5 hr, which, perhaps, are generated near the vicinity of black holes. Assuming this, estimates of the masses of the black holes are made at ~109, 8×108, and 2.7×109 M for S5 0716+71, 3C66A, and OJ 287, respectively. Multi-wavelength light-curves for the blazar PKS 1510-089 are discussed to infer the emission processes responsible for the recent flaring episodes in this source.

CONSTRAINING SUPERNOVA PROGENITORS: AN INTEGRAL FIELD SPECTROSCOPIC SURVEY OF THE EXPLOSION SITES

  • KUNCARAYAKTI, H.;ALDERING, G.;ANDERSON, J.P.;ARIMOTO, N.;DOI, M.;GALBANY, L.;HAMUY, M.;HASHIBA, Y.;KRUEHLER, T.;MAEDA, K.;MOROKUMA, T.;USUDA, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.139-143
    • /
    • 2015
  • We describe a survey of nearby core-collapse supernova (SN) explosion sites using integral field spectroscopy (IFS) techniques, which is an extension of the work described in Kuncarayakti et al. (2013). The project aims to constrain SN progenitor properties based on the study of the immediate environment of the SN. The stellar populations present at the SN explosion sites are studied by means of integral field spectroscopy, which enables the acquisition of both spatial and spectral information of the object simultaneously. The spectrum of the SN parent stellar population gives an estimate of its age and metallicity. With this information, the initial mass and metallicity of the once coeval SN progenitor star are derived. While the survey is mostly done in optical, the additional utilization of near-infrared integral field spectroscopy assisted with adaptive optics (AO) enables us to examine the explosion sites in high spatial detail, down to a few parsecs. This work is being carried out using multiple 2-8 m class telescopes equipped with integral field spectrographs in Chile and Hawaii.

THE GEOMETRIC ALBEDO OF (4179) TOUTATIS ESTIMATED FROM KMTNET DEEP-SOUTH OBSERVATIONS

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Jin, Sunho;Yang, Hongu;Moon, Hong-Kyu;Choi, Young-Jun;JeongAhn, Youngmin;Kim, Myung-Jin;Kwak, SungWon
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.3
    • /
    • pp.71-82
    • /
    • 2019
  • We derive the geometric albedo of a near-Earth asteroid, (4179) Toutatis, to investigate its surface physical conditions. The asteroid has been studied rigorously not only via ground-based photometric, spectrometric, polarimetric, and radar observations but also via in situ observation by the Chinese Chang'e-2 space probe; however, its geometric albedo is not well understood. We conducted V-band photometric observations when the asteroid was at opposition in April 2018 using the three telescopes in the southern hemisphere that compose the Korea Microlensing Telescope Network (KMTNet). The observed time-variable cross section was corrected using the radar shape model. We find that Toutatis has a geometric albedo $p_V=0.185^{+0.045}_{-0.039}$, which is typical of S-type asteroids. We compare the geometric albedo with archival polarimetric data and further find that the polarimetric slope-albedo law provides a reliable estimate for the albedo of this S-type asteroid. The thermal infrared observation also produced similar results if the size of the asteroid is updated to match the results from Chang'e-2. We conjecture that the surface of Toutatis is covered with grains smaller than that of the near-Sun asteroids including (1566) Icarus and (3200) Phaethon.

HYPER SUPRIME-CAMERA SURVEY OF THE AKARI NEP WIDE FIELD

  • Goto, Tomotsugu;Toba, Yoshiki;Utsumi, Yousuke;Oi, Nagisa;Takagi, Toshinobu;Malkan, Matt;Ohayma, Youichi;Murata, Kazumi;Price, Paul;Karouzos, Marios;Matsuhara, Hideo;Nakagawa, Takao;Wada, Takehiko;Serjeant, Steve;Burgarella, Denis;Buat, Veronique;Takada, Masahiro;Miyazaki, Satoshi;Oguri, Masamune;Miyaji, Takamitsu;Oyabu, Shinki;White, Glenn;Takeuchi, Tsutomu;Inami, Hanae;Perason, Chris;Malek, Katarzyna;Marchetti, Lucia;Lee, HyungMoK;Im, Myung;Kim, Seong Jin;Koptelova, Ekaterina;Chao, Dani;Wu, Yi-Han;AKARI NEP Survey team;AKARIAll Sky Survey Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.225-230
    • /
    • 2017
  • The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z~1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field ($5.4deg^2$), using ~10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ~25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1< z <2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g, r, i, z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate midIR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.