• 제목/요약/키워드: infrared: galaxy evolution

검색결과 72건 처리시간 0.02초

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

Environmental Dependence of Star-formation Properties of Galaxies at 0.5 < z < 2

  • Lee, Seong-Kook;Im, Myungshin;Kim, Jae-Woo
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.47.2-47.2
    • /
    • 2015
  • At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped. In this presentation, we will show the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z~2 to z~0.5, focusing its dependence on their stellar mass and environment. In the UKIDSS/UDS region, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates at z~0.5-2. Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z<1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < $10^{10}M_{\odot}$) since the star formation in most of high mass galaxies are already quenched at z > 1.

  • PDF

PATIAL DISTRIBUTION OF STAR FORMATION ACTIVITY ON NGC 253 BY FIR AND RADIO EMISSION LINES

  • Takahashi, H.;Matsuo, H.;Nakanishi, K.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.261-262
    • /
    • 2012
  • The aim of this research is to reveal the spatial distribution of the star formation activity of nearby galaxies by comparing CO molecular emission lines with the large area observation in far-infrared (FIR) lines. We report the imaging observations of NGC 253 by FIR forbidden lines via FIS-FTS and CO molecular lines from low to high excitation levels with ASTE, which are good tracers of star forming regions or photo-dissociation regions, especially spiral galaxies, in order to derive the information of the physical conditions of the ambient interstellar radiation fields. The combination of spatially resolved FIR and sub-mm data leads to the star formation efficiency within galaxy. The ratio between the FIR luminosity and molecular gas mass, $L_{FIR}/M_{H_2}$, is expected to be proportional to the number of stars formed in the galaxy per unit molecular gas mass and time. Moreover the FIR line ux shows current star formation activity directly. Furthermore these can be systematic and statistical data for star formation history and evolution of spiral galaxies.

STRONG GRAVITATIONAL LENSES AND MULTI-WAVELENGTH GALAXY SURVEYS WITH AKARI, HERSCHEL, SPICA AND EUCLID

  • Serjeant, Stephen
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.251-255
    • /
    • 2017
  • Submillimetre and millimetre-wave surveys with Herschel and the South Pole Telescope have revolutionised the discovery of strong gravitational lenses. Their follow-ups have been greatly facilitated by the multi-wavelength supplementary data in the survey fields. The forthcoming Euclid optical/near-infrared space telescope will also detect strong gravitational lenses in large numbers, and orbital constraints are likely to require placing its deep survey at the North Ecliptic Pole (the natural deep field for a wide class of ground-based and space-based observatories including AKARI, JWST and SPICA). In this paper I review the current status of the multi-wavelength survey coverage in the NEP, and discuss the prospects for the detection of strong gravitational lenses in forthcoming or proposed facilities such as Euclid, FIRSPEX and SPICA.

The Nature of Submillimeter Galaxies in the North Ecliptic Pole SCUBA-2 Survey

  • Lee, Dongseob;Shim, Hyunjin
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.35.2-35.2
    • /
    • 2020
  • Submillimeter galaxies (SMGs) have played an important role in the understanding of galaxy evolution and cosmic star formation history at high redshift because they are known as being located at z ~ 2 and harbor a vigorous star formation. Therefore studying properties of SMGs can lead us to understand evolution of massive and actively star forming galaxies and distribution of cosmic star formation density. Recently we detected 548 SMGs near North Ecliptic Pole with JCMT/SCUBA-2 from the JCMT large program covering about 2 deg2 so far. To derive their physical parameters, we compiled a multi-wavelength photometry ranging from optical (0.3 ㎛) to submillimeter (850 ㎛) by cross-identifying counterparts at different wavelengths. In order to find counterparts, we used either VLA-1.4 GHz image and/or Spitzer/IRAC 3.6 ㎛, 4.5 ㎛ image. The number of SMGs with relatively robust counterparts is 349. In this talk, we present photometric redshifts, stellar mass, star formation rates, total infrared luminosity, and AGN fraction of these 349 SMGs derived through SED fitting analysis.

  • PDF

On the Nature of LINERs: A Clue from Keck/LRIS Observations

  • 배현진;;우종학;;윤석진
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • Low-ionization nuclear emission-line regions (LINERs) have been generally regarded to be powered by active galactic nuclei (AGNs), yet still a number of alternative explanations on the origin of LINER emission are suggested; for example, planetary nebulae nuclei of massive stars, supernovae shocks from death of massive stars, and old stellar populations. Interestingly, a majority of recent star formation early-type galaxies (ETGs) in local universe presents such LINER emission lines. Given that situation, revealing the true nature of LINERs is a crucial step to constrain the evolution path to quiescent ETGs. To resolve the issue, we use Keck/LRIS to obtain spatially resolved spectra on a carefully selected ETG. The ETG SDSS J091628.05+420818.7 at redshift z ~ 0.024 shows modest LINER emission line features without any detection of 21 cm radio continuum nor X-ray emission. We perform a stellar continuum subtraction and measure emission line strengths and their uncertainties for each spectrum from five apertures along the slit with size of 1 arcsecond (~0.5 kpc). We find that extended spatial distributions of four emission lines $H{\alpha}$, $H{\beta}$, [OIII]${\lambda}5007$, and [NII]${\lambda}6583$, and they can be explained by central emission blurring effect. We conclude that the emissions seem to be centrally concentrated, indicating the AGN-nature of LINERs.

  • PDF

다파장 관측 자료를 이용한 다양한 환경에서의 은하 진화 연구 (A Multi-Wavelength Study of Galaxy Transition in Different Environments)

  • 이광호
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.34.2-35
    • /
    • 2018
  • Galaxy transition from star-forming to quiescent, accompanied with morphology transformation, is one of the key unresolved issues in extragalactic astronomy. Although several environmental mechanisms have been proposed, a deeper understanding of the impact of environment on galaxy transition still requires much exploration. My Ph.D. thesis focuses on which environmental mechanisms are primarily responsible for galaxy transition in different environments and looks at what happens during the transition phase using multi-wavelength photometric/spectroscopic data, from UV to mid-infrared (MIR), derived from several large surveys (GALEX, SDSS, and WISE) and our GMOS-North IFU observations. Our multi-wavelength approach provides new insights into the *late* stages of galaxy transition with a definition of the MIR green valley different from the optical green valley. I will present highlights from three areas in my thesis. First, through an in-depth study of environmental dependence of various properties of galaxies in a nearby supercluster A2199 (Lee et al. 2015), we found that the star formation of galaxies is quenched before the galaxies enter the MIR green valley, which is driven mainly by strangulation. Then, the morphological transformation from late- to early-type galaxies occurs in the MIR green valley. The main environmental mechanisms for the morphological transformation are galaxy-galaxy mergers and interactions that are likely to happen in high-density regions such as galaxy groups/clusters. After the transformation, early-type MIR green valley galaxies keep the memory of their last star formation for several Gyr until they move on to the next stage for completely quiescent galaxies. Second, compact groups (CGs) of galaxies are the most favorable environments for galaxy interactions. We studied MIR properties of galaxies in CGs and their environmental dependence (Lee et al. 2017), using a sample of 670 CGs identified using a friends-of-friends algorithms. We found that MIR [3.4]-[12] colors of CG galaxies are, on average, bluer than those of cluster galaxies. As CGs are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends can also be seen for neighboring galaxies around CGs. However, CG members always have larger early-type fractions and bluer MIR colors than their neighboring galaxies. These results suggest that galaxy evolution is faster in CGs than in other environments and that CGs are likely to be the best place for pre-processing. Third, post-starburst galaxies (PSBs) are an ideal laboratory to investigate the details of the transition phase. Their spectra reveal a phase of vigorous star formation activity, which is abruptly ended within the last 1 Gyr. Numerical simulations predict that the starburst, and thus the current A-type stellar population, should be localized within the galaxy's center (< kpc). Yet our GMOS IFU observations show otherwise; all five PSBs in our sample have Hdelta absorption line profiles that extend well beyond the central kpc. Most interestingly, we found a negative correlation between the Hdelta gradient slopes and the fractions of the stellar mass produced during the starburst, suggesting that stronger starbursts are more centrally-concentrated. I will discuss the results in relation with the origin of PSBs.

  • PDF

DETECTION OF Hα EMISSION FROM z>3.5 GALAXIES WITH AKARI-FUHYU NIR SPECTROSCOPY

  • Sedgwick, Chris;Serjeant, Stephen;Pearson, Chris;Takagi, Toshinobu;Matsuhara, Hideo;Wada, Takehiko;Lee, Hyung Mok;Im, Myungshin;Jeong, Woong-Seob;Oyabu, Shinki;White, Glenn J.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.357-360
    • /
    • 2012
  • This paper presents $H{\alpha}$ emission line detections for four galaxies at z > 3.5 made with AKARI as part of the FUHYU mission program. These are the highest-redshift $H{\alpha}$ detections to date in star-forming galaxies. AKARI's unique near-infrared spectroscopic capability has made these detections possible. For two of these galaxies, this represents the first evidence of their redshifts and confirms their physical association with a companion radio galaxy. The star formation rates (SFRs) estimated from the $H{\alpha}$ lines under-predict the SFRs estimated from their far-infrared luminosities by a factor of ~ 2 - 3. We have also detected broad $H{\alpha}$ components in the two radio galaxies which indicate the presence of quasars.

OPTICAL-NEAR INFRARED COLOR GRADIENTS OF ELLIPTICAL GALAXIES AND THEIR ENVIRONMENTAL DEPENDENCE

  • KO JONGWAN;IM MYUNGSHIN
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.149-151
    • /
    • 2005
  • We have studied the environmental effect on optical-NIR color gradients of 273 nearby elliptical galaxies. Color gradient is a good tool to study the evolutionary history of elliptical galaxies, since the steepness of the color gradient reflects merging history of early types. When an elliptical galaxy goes through many merging events, the color gradient can be get less steep or reversed due to mixing of stars. One simple way to measure color gradient is to compare half-light radii in different bands. We have compared the optical and near infrared half-light radii of 273 early-type galaxies from Pahre (1999). Not surprisingly, we find that $r_e(V)s$ (half-light radii measured in V-band) are in general larger than $r_e(K)s$ (half-light radii measured in K-band). However, when divided into different environments, we find that elliptical galaxies in the denser environment have gentler color gradients than those in the less dense environment. Our finding suggests that elliptical galaxies in the dense environment have undergone many merging events and the mixing of stars through the merging have created the gentle color gradients.

EVOLUTION OF LUMINOUS INFRARED GALAXIES REVEALED BY NEAR-INFRARED MULTI-BAND IMAGING OF THEIR HOSTS

  • Oi, Nagisa;Imanishi, Masatoshi
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.301-303
    • /
    • 2012
  • We present the result of our near infrared J- (${\lambda}=1.25{\mu}m$), H- (${\lambda}=1.63{\mu}m$), and $K_s$-band (${\lambda}=2.14{\mu}m$) imaging of ultraluminous ($L_{IR}$ > $10^{12}L_{\odot}$) and luminous ($L_{IR}=10^{11-12}L_{\odot}$) infrared galaxies (ULIRGs and LIRGs), to investigate their relationship through properties of their host galaxies. We find that (1) for single-nucleus ULIRGs and LIRGs, their spheroidal host galaxies have similar properties, but ULIRGs display a substantially higher level of nuclear activity than LIRGs, suggesting that their infrared luminosity difference comes primarily from the different level of current nuclear activity. We infer that LIRGs and ULIRGs have similar progenitor galaxies, follow similar evolutionary processes, and may evolve into optically-selected QSOs. (2) Largely-separated multiple-nuclei ULIRGs have significantly brighter host galaxies than single-nucleus ULIRGs and LIRGs in $K_s$-band, indicating that multiple-nuclei ULIRGs have a bias towards mergers of intrinsically large progenitor galaxies, in order to produce high infrared luminosity ($L_{IR}$ > $10^{12}L_{\odot}$) even at the early merging stage. (3) We derive dust extinction of host galaxies of ULIRGs and LIRGs to be $A_V$ ~ 14 mag in the optical or equivalently $A_K$ ~ 0.8 mag in the near-infrared $K_s$-band, based on the comparison of host galaxy's luminosities in the J-, H-, and $K_s$-bands.