• Title/Summary/Keyword: infra-homogeneous spaces

Search Result 2, Processing Time 0.035 seconds

REIDEMEISTER ZETA FUNCTION FOR GROUP EXTENSIONS

  • Wong, Peter
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1107-1116
    • /
    • 2001
  • In this paper, we study the rationality of the Reidemeister zeta function of an endomorphism of a group extension. As an application, we give sufficient conditions for the rationality of the Reidemeister and the Nielsen zeta functions of selfmaps on an exponential solvmanifold or an infra-nilmanifold or the coset space of a compact connected Lie group by a finite subgroup.

  • PDF

UNIMODULAR GROUPS OF TYPE ℝ3 ⋊ ℝ

  • Lee, Jong-Bum;Lee, Kyung-Bai;Shin, Joon-Kook;Yi, Seung-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1121-1137
    • /
    • 2007
  • There are 7 types of 4-dimensional solvable Lie groups of the form ${\mathbb{R}^3}\;{\times}_{\varphi}\;{\mathbb{R}}$ which are unimodular and of type (R). They will have left. invariant Riemannian metrics with maximal symmetries. Among them, three nilpotent groups $({\mathbb{R}^4},\;Nil^3\;{\times}\;{\mathbb{R}\;and\;Nil^4)$ are well known to have lattices. All the compact forms modeled on the remaining four solvable groups $Sol^3\;{\times}\;{\mathbb{R}},\;Sol_0^4,\;Sol_0^'4\;and\;Sol_{\lambda}^4$ are characterized: (1) $Sol^3\;{\times}\;{\mathbb{R}}$ has lattices. For each lattice, there are infra-solvmanifolds with holonomy groups 1, ${\mathbb{Z}}_2\;or\;{\mathbb{Z}}_4$. (2) Only some of $Sol_{\lambda}^4$, called $Sol_{m,n}^4$, have lattices with no non-trivial infra-solvmanifolds. (3) $Sol_0^{'4}$ does not have a lattice nor a compact form. (4) $Sol_0^4$ does not have a lattice, but has infinitely many compact forms. Thus the first Bieberbach theorem fails on $Sol_0^4$. This is the lowest dimensional such example. None of these compact forms has non-trivial infra-solvmanifolds.