2001년 9/11 테러공격 이후에 미국은 사이버 안보를 가장 위중한 국가안보 문제로 인식한다. 미국 국방부는 2013년 처음으로 사이버 전쟁이 물리적인 테러보다 더 큰 국가안보 위협임을 확인했다. 단적으로 윌리암 린(William J. Lynn) 국방부 차관의 지적처럼 오늘날 사이버 공간은 육지, 바다, 하늘, 우주 다음의 '제5의 전장(the fifth domain of warfare)'이라고 함에 의문이 없다. 인터넷의 활용과 급속한 보급은 사이버 공간에서의 상상하지 못했던 역기능을 창출한 것이다. 이에 사이버 정보와 사이버 네트워크 보호까지를 포괄하지 않으면 국가안보 수호의 목표를 달성할 수 없게 되었다. 그런데 이러한 위험성에도 불구하고 각국은 운영상의 효율성과 편리성, 국제교류 등 외부세계와의 교류확대를 위해 국가기간망의 네트워크화를 더욱 확대해 가고 있고 인터넷에의 의존도는 심화되고 있다. 하지만 그 실천적인 위험성에도 불구하고 우리의 법제도적 장치와 사이버 안전에 대한 인식수준은 현실을 제대로 반영하지 못하고 있는 것으로 판단된다. 오늘날 가장 실천적이고 현실적인 위협을 제기하는 사이버 안보의 핵심은 하나도 둘도 계획의 구체성과 실천력의 배양이다. 대책회의나 교육 등은 부차적이다. 실전적인 사이버 사령부와 사이버 정보기구 그리고 사이버 전사의 창설과 육성에 더 커다란 노력을 경주해야 하고, 우리의 경우에는 가장 많은 경험을 가지고 인력과 장비를 가진 국가정보원의 사이버 수호 역량을 고양하고 더 많은 책무를 부담시키고 합리적인 업무 감독을 다하는 것에 있다고 할 것이다. 이에 본고는 법규범적으로 치안질서와 별개 개념으로서의 국가안보에 대한 무한책임기구인 국가정보기구의 사이버 안보에 대한 책무와 그에 더하여 필요한 사이버 정보활동과 유관활동의 범위를 검토하고자 한다. 사이버 테러와 사이버 공격을 포괄한 사이버 공격(Cyber Attack)에 대한 이해와 전자기장을 물리적으로 장악하는 전자전에 대한 연구도 포함한다.
본 논문은 일한기계번역에서 일본어 진행표현 "ている" 형태로부터 한국어 대역어의 선정과정에서 발생하는 애매성을 해소하기 위하여 연구한 것이다. 대부분의 일한 기계번역 시스템은 양궁어의 문법적인 유사엉에 기초하여 어휘적인 단계의 처리만으로 고품질의 번역이 가능한 직접 번역방식을 채용하고 있다. 그러나, 직접 번역방식에 기초한 일한 기계번역에서는 술부에 존재하는 "ている"형태의 상적인 의미를 구별할 수 있는 방법론이 아직 제안되지 않았다. 일본어에서 "ている"형태는 동작진행과 상태진행을 모두 나타내지만 한국어에서는 "고 있다."와 "어 있다."로 나누어 표기한다. 양 언어간의 상적인 의미 대응은 간단하지 않지만, 술부의 의미 정보, 부사와 부사어의 의미정보 등을 이용하여 "ている"형태의 상적인 의미를 결정하는 것이 가능하다. "ている"형태의 적절한 대역어 선정을 위하여, 사전 속의 모든 일본어 술어에 다섯 종류의 의미코드를 입력한다. 즉 "1:동작진행만으로 사용되는 술어", "2: 일반적으로는 동작진행으로 사용되지만, 수동인 경우에는 상태진행의 형태로도 사용되는 술어", "3: 상태진행으로만 사용되는 술어", "4: 동작진행, 상태진행의 구별이 애매한 술어", "5: 기타" 당의 상적인 의미분류코드를 술어별로 입력한다. 그리고 "2","4"형태의 술어로부터 진행형은 구별하기 위하여 부사와 부사어를 사용하는 방법을 제안한다. 실험에는 아사히 신문의 기사 중에서 임의로 약 15,000문을 추출하여 이용하였다. 제안한 방법은 실험문장에서 83.6%의 성공률을 보였으며 단순히 동작진행과 상태진행, 기타만으로 나누어 처리하던 종전 시스템에 비하여 약 5.7%정도 더 좋은 결과가 얻어졌다.아사히 신문의 기사 중에서 임의로 약 15,000문을 추출하여 이용하였다. 제안한 방법은 실험문장에서 83.6%의 성공률을 보였으며 단순히 동작진행과 상태진행, 기타만으로 나누어 처리하던 종전 시스템에 비하여 약 5.7%정도 더 좋은 결과가 얻어졌다.
정부에서는 공동주택 노후화 문제에 대응하여 공동주택 리모델링 활성화를 위한 법과 제도를 꾸준히 개정 발전시켜왔다. 그러나 이러한 노력에도 불구하고 아직까지 세대수증가형 리모델링은 활성화되지 못하고 있다. 그 이유로 다양한 문제점이 있지만, 본 연구에서는 리모델링 사업 초기단계에 합리적인 사업성 분석과 의사결정을 위한 도구가 없다는 문제점에 주목하여 리모델링 사업성평가 모델을 제시하였다. 일반적으로 사업성(수익성) 판단은 리모델링 설계안 도출 이후에 이루어지기 마련인데, 리모델링 사업을 추진하기 위한 의사결정은 초기 추진위 단계에서 결정되기 때문에 기획단계 사업성 분석 모델이 필요하다. 이에 따라 기존의 단지정보와 자문 및 연구를 통해 도출한 리모델링 사업변수들을 이용하여 공사비, 사업비, 금융비, 일반분양수입비를 산출하였고, 이를 활용하여 투자수익률과 조합원 분담금을 개략적으로 산출할 수 있는 알고리즘을 개발하였다. 또한 개발된 초기단계 사업성 분석모델을 3개의 기추진 사례에 적용하여 모델의 적용성을 검증하였다. 비록 3개의 사례에 적용하였으나, 모델의 예측값과 실제 사례값의 오차는 5%이하로 본 모델의 적용성은 상당히 높다고 볼 수 있다. 향후 사례수를 늘려가면서 모델의 적용성을 높여간다면 실무에서 활용 가능한 유용한 tool이 될 수 있을 것으로 판단된다. 본 연구에서 개발된 개략 사업성 평가 모델은 입주민들의 빠른 의사결정을 지원하여 원활한 사업추진이 가능하게 할 것이며, 모델이 지역별로 다양하게 적용된다면 세대수증가형 리모델링사업 가능단지들의 규모를 파악하고 이를 지원하는 지자체의 정책 수립에도 기여할 수 있을 것으로 기대한다.
신문의 역할은 정부의 비판과 감시다. 공공의 문제에 해설과 논평을 하는가 하면 다양한 여론을 형성하고 전달한다. 메타데이터가 확실한 사진 기록물을 담고 있으며, 지역신문의 경우 로컬리티 확보의 중요한 도구다. 신문에 실린 광고와 신문의 편집 역시도 시대의 단면을 보여준다. 이런 신문의 기록학적 가치 때문에 도큐멘테이션 전략을 수립할 때도 신문은 늘 우선적으로 수집이 고려되는 기록물이다. 신문을 보존하고 관리하기 위한 신문 아카이브는 여러모로 중요한 의미를 지닌다. 기자들이 기사를 작성하기 위해 이용하기도 하고, 다양한 학문 분야의 연구를 위한 자료로도 활용이 된다. 신문의 교육적 활용인 NIE에도 이용되지만 신문 아카이브는 디지털 시대에 들어와 더욱 중요한 위치를 차지한다. 미디어 자산을 통합 관리하는 MAM의 핵심에 아카이브가 위치하기 때문이다. 신문 제작뿐만 아니라 신문사 경영 등 전 영역에 걸쳐 새로운 역할을 온라인 아카이브가 하게 될 거라는 전망들이 나오고 있다. 한국에서도 이미 1991년 기사통합 DB인 KINDS가 서비스를 시작했고, 네이버에서는 뉴스 라이브러리라는 온라인 신문 아카이브를 구축해 운영하고 있다. KINDS의 경우 초기에는 뜨거운 반응이 있었으나, 현재는 이용률이 저조한 상태이다. "조선일보", "중앙일보" 등 주요 신문사가 빠져 있고, 이용자 인터페이스도 불편한 점이 많기 때문이다. 하지만 공공예산이 투입되어 무료로 이용할 수 있다는 점이나, 지방지에 대한 접근성 등은 큰 장점이다. 고신문의 경우 국립중앙도서관에서 지속적으로 디지타이징을 하고 있다. 개별 신문사들의 경우도 아카이브라고 하기 민망한 수준이자만 서비스를 제공하고 있다. 미국의 경우 의회도서관에서 국립인문기금과 함께 역사적 신문을 디지타이징 하는 'CHRONICLING AMERICA' 프로젝트를 진행 중이다. 각 주의 대학과 역사협회, 공공 도서관에 기금을 줘 매년 10만 페이지의 지역신문을 디지타이징하고 있다. 영국 역시도 국립도서관이 중심이 되어 'The British NEWSPAPER Archive'라는 온라인 신문 아카이브를 구축하고 있는데, 미국과 달리 유료로 운영된다. 이곳 역시도 합동정보시스템위원회의 공공예산이 투입되었으며, 지금도 구축을 계속 이어가고 있다. 개별 신문사들은 아카이브 솔루션을 구매해 온라인 아카이브를 구축하는 경우가 많다. ProQuest Archiver, Gale Cengage-NewsVault가 대표적인 아카이브 플랫폼으로 신문 자체가 표준화되고 규격화되어 있는 만큼 이를 통한 아카이브 구축도 효율적인 방법으로 보인다. 국내의 온라인 신문 아카이브를 개선하기 위해서는 아카이브에 대한 인식의 전환과 함께 과감한 투자 등이 요구된다.
본 연구는 소비자들이 상권에 대하여 수행하는 웹 탐색 활동과 감성평가를 반영하는 데이터인 지역구 연관감성어휘를 기반으로 서울시 내 대형 상업 공간으로 정의할 수 있는 각 지역구 간의 연관 감성 네트워크에 대하여 소셜 네트워크 분석을 수행하였다. 나아가 도출한 소셜 네트워크 지표를 지역구 공공 데이터와 결합하여 보다 다각적 측면을 고려한 지역구 상권의 매출액에 영향을 미치는 요인들을 검증하였고 그 영향력의 변화 또한 확인해 보았다. 정적 데이터로 표현되는 공공 데이터만을 통해 구성된 모형으로도 높은 설명력을 가지는 것을 확인할 수 있었으나, 소셜 네트워크 분석 결과로 도출된 네트워크 지표와 결합된 모형에서는 그 설명력이 더욱 향상된 것이 확인되었다. 공공 데이터에 대한 회귀 분석 결과, 투입된 22개의 요인들 중 '골목 상권 수,' '1인당 거주면적,' '주거환경만족도,' '거래증감률,' '3년 이상 생존율'의 5개의 요인이 지역구 상권 매출액에 유의한 영향을 미치는 것이 확인되었다. 이후 공공 데이터와 네트워크 지표 결합 모형에서 투입된 지표들은 '에고 네트워크의 밀도,' '연결 중심성,' '근접 중심성,' '매개 중심성,' '아이겐벡터 중심성'이며, 이 중 '연결 중심성'과 '아이겐벡터 중심성'이 매출액에 유의한 영향을 미치며 모형 내에서 가장 높은 영향력을 보유한 것이 확인되었다. 본 연구는 각 상권이 소비자가 원하는 감성을 고려한 도시 전략 계획 수립과 이행의 실증적 근거로 활용될 수 있을 것이며, 상권에 진입하거나 재창업하는 자영업자나 잠재 창업자를 바탕으로 지역구 상권이 보유한 감성과 그 관계 구조를 고려한 상권 진입 방향성을 제공할 수 있을 것이다.
현 정부의 주요 국책사업 중 하나인 도시재생 뉴딜사업은 매년 100 곳씩, 5년간 500곳을대상으로 50조를 투자하여 낙후된 지역을 개발하는 것으로 언론과 지자체의 높은 이목이 집중되고 있다. 그러나, 현재 이 사업모델은 면적 규모에 따라 "우리동네 살리기, 주거정비지원형, 일반근린형, 중심시가지형, 경제기반형" 등 다섯 가지로 나뉘어 추진되어 그 지역 본래의 특성을 반영하지 못하고 있다. 국내 도시재생 성공 키워드는 "주민 참여", "지역특화" "부처협업", "민관협력"이다. 성공 키워드에 따르면 지자체에서 정부에게 도시재생 사업을 제안할 때 지역주민, 민간기업의 도움과 함께 도시의 특성을 정확히 이해하고 도시의 특성에 어울리는 방향으로 사업을 추진하는 것이 가장 중요하다는 것을 알 수 있다. 또한 도시재생 사업 후 발생하는 부작용 중 하나인 젠트리피케이션 문제를 고려하면 그 지역 특성에 맞는 도시재생 유형을 선정하여 추진하는 것이 중요하다. 이에 본 연구는 '도시재생 뉴딜 사업' 방법론의 한계점을 보완하기 위해, 기존 서울시가 지역 특성에 기반하여 추진하고 있는 "2025 서울시 도시재생 전략계획"의 도시재생 유형을 참고하여 도시재생 사업지에 맞는 도시재생 유형을 추천하는 시스템을 머신러닝 알고리즘을 활용하여 제안하고자 한다. 서울시 도시재생 유형은 "저이용저개발, 쇠퇴낙후, 노후주거, 역사문화자원 특화" 네 가지로 분류된다 (Shon and Park, 2017). 지역 특성을 파악하기 위해 총 4가지 도시재생 유형에 대해 사업이 진행된 22개의 지역에 대한 뉴스 미디어 10만여건의 텍스트 데이터를 수집하였다. 수집된 텍스트를 이용하여 도시재생 유형에 따른 지역별 주요 키워드를 도출하고 토픽모델링을 수행하여 유형별 차이가 있는 지 탐색해 보았다. 다음 단계로 주어진 텍스트를 기반으로 도시재생 유형을 추천하는 추천시스템 구축을 위해 텍스트 데이터를 벡터로 변환하여 머신러닝 분류모델을 개발하였고, 이를 검증한 결과 97% 정확도를 보였다. 따라서 본 연구에서 제안하는 추천 시스템은 도시재생 사업을 진행하는 과정에서 신규 사업지의 지역 특성에 기반한 도시재생 유형을 추천할 수 있을 것으로 기대된다.
박지성 선수의 2005년 맨체스터 유나이티드 FC 입단 이후로, 국내에서 프로축구 유니폼 시장이 본격적으로 성장하기 시작했다. 이후, 국내 선수들의 해외 리그에서 활약이 계속되면서 국내에서도 잉글랜드 프리미어리그에 대한 대중의 관심이 지속되고 있다. 이러한 시점에서 본 연구는 국내 프로축구 팬들의 유니폼 소비에 전반적인 소비자 인식을 알아보고, 선수의 영입에 따른 소비자 인식 변화를 비교하고자 했다. EPL의 토트넘에서 활동하고 있는 손흥민 선수의 영입 전후를 중심으로 소셜 미디어에 나타난 프로축구 팬들의 소비자 인식과 구매 요인을 알아보았다. 'EPL 유니폼'을 키워드로, 국내 포털사이트와 소셜 미디어의 게시글을 수집하고, 텍스트 마이닝, SNA, 회귀분석을 사용하여 분석했다. 연구 결과, 첫째, 선수의 소속 팀, 실적, 포지션과 구단의 실적, 순위, 리그의 우승 여부가 프로축구 유니폼의 구매와 탐색에 있어 주요 요인으로 확인되었다. 가격, 디자인, 사이즈, 로고 등과 같은 항목보다 유니폼의 형태, 마킹, 정품 여부, 스폰서와 더 중요하게 작용하고 있었다. 둘째, 구조적 등위성 분석과 군집분석을 통해 국내 프로축구 팬들 사이에서 유니폼과 관련되어 언급되고 있는 주요 주제를 알아본 결과, EPL에 소속된 구단과 유명 선수들이 가장 핵심적인 주제로 나타났다. 셋째, 프로축구 유니폼에 대한 시기별 주제는 월드컵과 EPL 리그에 대한 관심에서 EPL에서 활동하는 다양한 국내외 선수들에 대한 관심으로, 2015년 이후에는 유니폼 자체에 대한 것으로 주제가 변화했다. 이를 통해, 선수들의 이적에 따라 선수가 소속된 해당 구단의 유니폼이 관심을 받고 있음을 알 수 있었다. 넷째, 남녀 소비자 모두 손흥민에 대한 관심이 증가함에 따라서 토트넘이 소속된 리그인 EPL에 대한 관심도 증가하는 것으로 나타났다. 여성의 경우 손흥민에 대한 관심이 증가함에 따라 축구 유니폼에 대해서도 관심을 가지는 것으로 나타난 반면, 남성의 경우 손흥민 선수에 대한 관심과 축구 유니폼에 대한 관심 사이의 관계가 유의하게 나타나지 않았다. 각 구단은 선수와 구단의 성적과 이미지 관리, 스폰서 브랜드 관리에 집중하고, 선수의 이적이 결정되면 선수의 자국에 해당 물량의 공급을 늘리며, 인기를 끌고 있는 선수의 등번호가 부착된 유니폼의 경우에는 여성을 위한 다양한 사이즈를 제공해야 할 필요가 있다.
최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.
대규모 텍스트에서 관심 대상이 가지고 있는 속성들에 대한 감성을 세부적으로 분석하는 속성기반 감성분석(Aspect-Based Sentiment Analysis)은 상당한 비즈니스 가치를 제공한다. 특히, 텍스트에 속성어가 존재하는 명시적 속성뿐만 아니라 속성어가 없는 암시적 속성까지 분석 대상으로 하는 속성카테고리 감성분류(ACSC, Aspect Category Sentiment Classification)는 속성기반 감성분석에서 중요한 의미를 지니고 있다. 본 연구는 속성카테고리 감성분류에 BERT 사전훈련 언어 모델을 적용할 때 기존 연구에서 다루지 않은 다음과 같은 주요 이슈들에 대한 답을 찾고, 이를 통해 우수한 ACSC 모델 구조를 도출하고자 한다. 첫째, [CLS] 토큰의 출력 벡터만 분류벡터로 사용하기보다는 속성카테고리에 대한 토큰들의 출력 벡터를 분류벡터에 반영하면 더 나은 성능을 달성할 수 있지 않을까? 둘째, 입력 데이터의 문장-쌍(sentence-pair) 구성에서 QA(Question Answering)와 NLI(Natural Language Inference) 타입 간 성능 차이가 존재할까? 셋째, 입력 데이터의 QA 또는 NLI 타입 문장-쌍 구성에서 속성카테고리를 포함한 문장의 순서에 따른 성능 차이가 존재할까? 이러한 연구 목적을 달성하기 위해 입력 및 출력 옵션들의 조합에 따라 12가지 ACSC 모델들을 구현하고 4종 영어 벤치마크 데이터셋에 대한 실험을 통해 기존 모델 이상의 성능을 제공하는 ACSC 모델들을 도출하였다. 그리고 [CLS] 토큰에 대한 출력 벡터를 분류벡터로 사용하기 보다는 속성카테고리 토큰의 출력 벡터를 사용하거나 두 가지를 함께 사용하는 것이 더욱 효과적이고, NLI 보다는 QA 타입의 입력이 대체적으로 더 나은 성능을 제공하며, QA 타입 안에서 속성이 포함된 문장의 순서는 성능과 무관한 점 등의 유용한 시사점들을 발견하였다. 본 연구에서 사용한 ACSC 모델 디자인을 위한 방법론은 다른 연구에도 비슷하게 응용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.