• Title/Summary/Keyword: information retrieval.

Search Result 3,681, Processing Time 0.033 seconds

Is it necessary to distinguish semantic memory from episodic memory\ulcorner (의미기억과 일화기억의 구분은 필요한가)

  • 이정모;박희경
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.3_4
    • /
    • pp.33-43
    • /
    • 2000
  • The distinction between short-term store (STS) and long-term store (LTS) has been made in the perspective of information processing. Memory system theorists have argued that memory could be conceived as multiple memory systems beyond the concept of a single LTS. Popular memory system models are Schacter & Tulving (994)'s multiple memory systems and Squire (987)'s the taxonomy of long-term memory. Those m models agree that amnesic patients have intact STS but impaired LTS and have preserved implicit memory. However. there is a debate about the nature of the long-term memory impairment. One model considers amnesic deficit as a selective episodic memory impairment. whereas the other sees the deficits as both episodic and semantic memory impairment. At present, it remains unclear that episodic memory should be distinguished from semantic memory in terms of retrieval operation. The distinction between declarative memory and nondeclarative memory would be the alternative way to reflect explicit memory and implicit memory. The research focused on the function of frontal lobe might give clues to the debate about the nature of LTS.

  • PDF

Vector Approximation Bitmap Indexing Method for High Dimensional Multimedia Database (고차원 멀티미디어 데이터 검색을 위한 벡터 근사 비트맵 색인 방법)

  • Park Joo-Hyoun;Son Dea-On;Nang Jong-Ho;Joo Bok-Gyu
    • The KIPS Transactions:PartD
    • /
    • v.13D no.4 s.107
    • /
    • pp.455-462
    • /
    • 2006
  • Recently, the filtering approach using vector approximation such as VA-file[1] or LPC-file[2] have been proposed to support similarity search in high dimensional data space. This approach filters out many irrelevant vectors by calculating the approximate distance from a query vector using the compact approximations of vectors in database. Accordingly, the total elapsed time for similarity search is reduced because the disk I/O time is eliminated by reading the compact approximations instead of original vectors. However, the search time of the VA-file or LPC-file is not much lessened compared to the brute-force search because it requires a lot of computations for calculating the approximate distance. This paper proposes a new bitmap index structure in order to minimize the calculating time. To improve the calculating speed, a specific value of an object is saved in a bit pattern that shows a spatial position of the feature vector on a data space, and the calculation for a distance between objects is performed by the XOR bit calculation that is much faster than the real vector calculation. According to the experiment, the method that this paper suggests has shortened the total searching time to the extent of about one fourth of the sequential searching time, and to the utmost two times of the existing methods by shortening the great deal of calculating time, although this method has a longer data reading time compared to the existing vector approximation based approach. Consequently, it can be confirmed that we can improve even more the searching performance by shortening the calculating time for filtering of the existing vector approximation methods when the database speed is fast enough.

Design and Implementation of High-dimensional Index Structure for the support of Concurrency Control (필터링에 기반한 고차원 색인구조의 동시성 제어기법의 설계 및 구현)

  • Lee, Yong-Ju;Chang, Jae-Woo;Kim, Hang-Young;Kim, Myung-Joon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Recently, there have been many indexing schemes for multimedia data such as image, video data. But recent database applications, for example data mining and multimedia database, are required to support multi-user environment. In order for indexing schemes to be useful in multi-user environment, a concurrency control algorithm is required to handle it. So we propose a concurrency control algorithm that can be applied to CBF (cell-based filtering method), which uses the signature of the cell for alleviating the dimensional curse problem. In addition, we extend the SHORE storage system of Wisconsin university in order to handle high-dimensional data. This extended SHORE storage system provides conventional storage manager functions, guarantees the integrity of high-dimensional data and is flexible to the large scale of feature vectors for preventing the usage of large main memory. Finally, we implement the web-based image retrieval system by using the extended SHORE storage system. The key feature of this system is platform-independent access to the high-dimensional data as well as functionality of efficient content-based queries. Lastly. We evaluate an average response time of point query, range query and k-nearest query in terms of the number of threads.

VP Filtering for Efficient Query Processing in R-tree Variants Index Structures (R-tree 계열의 인덱싱 구조에서의 효율적 질의 처리를 위한 VP 필터링)

  • Kim, Byung-Gon;Lee, Jae-Ho;Lim, Hae-Chull
    • Journal of KIISE:Databases
    • /
    • v.29 no.6
    • /
    • pp.453-463
    • /
    • 2002
  • With the prevalence of multi-dimensional data such as images, content-based retrieval of data is becoming increasingly important. To handle multi-dimensional data, multi-dimensional index structures such as the R-tree, Rr-tree, TV-tree, and MVP-tree have been proposed. Numerous research results on how to effectively manipulate these structures have been presented during the last decade. Query processing strategies, which is important for reducing the processing time, is one such area of research. In this paper, we propose query processing algorithms for R-tree based structures. The novel aspect of these algorithms is that they make use of the notion of VP filtering, a concept borrowed from the MVP-tree. The filtering notion allows for delaying of computational overhead until absolutely necessary. By so doing, we attain considerable performance benefits while paying insignificant overhead during the construction of the index structure. We implemented our algorithms and carried out experiments to demonstrate the capability and usefulness of our method. Both for range query and incremental query, for all dimensional index trees, the response time using VP filtering was always shorter than without VP filtering. We quantitatively showed that VP filtering is closely related with the response time of the query.

A Korean Community-based Question Answering System Using Multiple Machine Learning Methods (다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1085-1093
    • /
    • 2016
  • Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.

Improvement of Cloud-data Filtering Method Using Spectrum of AERI (AERI 스펙트럼 분석을 통한 구름에 영향을 받은 스펙트럼 자료 제거 방법 개선)

  • Cho, Joon-Sik;Goo, Tae-Young;Shin, Jinho
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.137-148
    • /
    • 2015
  • The National Institute of Meteorological Research (NIMR) has operated the Fourier Transform InfraRed (FTIR) spectrometer which is the Atmospheric Emitted Radiance Interferometer (AERI) in Anmyeon island, Korea since June 2010. The ground-based AERI with similar hyper-spectral infrared sensor to satellite could be an alternative way to validate satellite-based remote sensing. In this regard, the NIMR has focused on the improvement of retrieval quality from the AERI, particularly cloud-data filtering method. The AERI spectrum which is measured on a typical clear day is selected reference spectrum and we used region of atmospheric window. We performed test of threshold in order to select valid threshold. We retrieved methane using new method which is used reference spectrum, and the other method which is used KLAPS cloud cover information, each retrieved methane was compared with that of ground-based in-situ measurements. The quality of AERI methane retrievals of new method was significantly more improved than method of used KLAPS. In addition, the comparison of vertical total column of methane from AERI and GOSAT shows good result.

Text Filtering using Iterative Boosting Algorithms (반복적 부스팅 학습을 이용한 문서 여과)

  • Hahn, Sang-Youn;Zang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.270-277
    • /
    • 2002
  • Text filtering is a task of deciding whether a document has relevance to a specified topic. As Internet and Web becomes wide-spread and the number of documents delivered by e-mail explosively grows the importance of text filtering increases as well. The aim of this paper is to improve the accuracy of text filtering systems by using machine learning techniques. We apply AdaBoost algorithms to the filtering task. An AdaBoost algorithm generates and combines a series of simple hypotheses. Each of the hypotheses decides the relevance of a document to a topic on the basis of whether or not the document includes a certain word. We begin with an existing AdaBoost algorithm which uses weak hypotheses with their output of 1 or -1. Then we extend the algorithm to use weak hypotheses with real-valued outputs which was proposed recently to improve error reduction rates and final filtering performance. Next, we attempt to achieve further improvement in the AdaBoost's performance by first setting weights randomly according to the continuous Poisson distribution, executing AdaBoost, repeating these steps several times, and then combining all the hypotheses learned. This has the effect of mitigating the ovefitting problem which may occur when learning from a small number of data. Experiments have been performed on the real document collections used in TREC-8, a well-established text retrieval contest. This dataset includes Financial Times articles from 1992 to 1994. The experimental results show that AdaBoost with real-valued hypotheses outperforms AdaBoost with binary-valued hypotheses, and that AdaBoost iterated with random weights further improves filtering accuracy. Comparison results of all the participants of the TREC-8 filtering task are also provided.

The effect of Meister high school students' career maturity with respect to the impact on school maladjustment (마이스터고등학교 학생들의 진로성숙도가 학교 부적응에 미치는 영향)

  • Yoo, Jae-Man;Lee, Byung-Wook
    • 대한공업교육학회지
    • /
    • v.41 no.2
    • /
    • pp.1-23
    • /
    • 2016
  • This study was conducted to analyze the effect Meister high school students' career maturity with respect to the impact on school maladjustment. Also, this study clarify the relationship. This study purpose is to permanently provide Meister as the basis for the vocational education sector career education needed to faithfully serve as a special purpose high schools. Tools used for the survey is maladaptive measurement tools developed by Leegyumi (2004) and Career maturity measurement tools developed at Korea Research Institute for Vocational Education and Training (2012). Using these tools, a reliability test was conducted. Meister students' career maturity was conducted correlation analysis and multiple regression analysis to analyze the impact of school maladjustment. Independent variables are consisted of career maturity and independence, attitude toward the job, planning, self-understanding, rational decision-making, information retrieval, knowledge of the desired job, career exploration and ready for action. Meister high school student's career maturity according to the students' background variables are little girls was higher than boys, but it was not statistically significant. T-test was conducted to ascertain the career maturity and school maladjustment differences of adaptation groups and maladaptive group in meister school students in background variables. A career maturity and school maladjustment between adaptive and maladaptive population groups showed a statistically significant difference in background variables.

Optimizing Similarity Threshold and Coverage of CBR (사례기반추론의 유사 임계치 및 커버리지 최적화)

  • Ahn, Hyunchul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.535-542
    • /
    • 2013
  • Since case-based reasoning(CBR) has many advantages, it has been used for supporting decision making in various areas including medical checkup, production planning, customer classification, and so on. However, there are several factors to be set by heuristics when designing effective CBR systems. Among these factors, this study addresses the issue of selecting appropriate neighbors in case retrieval step. As the criterion for selecting appropriate neighbors, conventional studies have used the preset number of neighbors to combine(i.e. k of k-nearest neighbor), or the relative portion of the maximum similarity. However, this study proposes to use the absolute similarity threshold varying from 0 to 1, as the criterion for selecting appropriate neighbors to combine. In this case, too small similarity threshold value may make the model rarely produce the solution. To avoid this, we propose to adopt the coverage, which implies the ratio of the cases in which solutions are produced over the total number of the training cases, and to set it as the constraint when optimizing the similarity threshold. To validate the usefulness of the proposed model, we applied it to a real-world target marketing case of an online shopping mall in Korea. As a result, we found that the proposed model might significantly improve the performance of CBR.

Grieving among Adolescent Survivors of Childhood Cancer: A Situational Analysis (청소년 소아암 생존자의 슬픔: 상황분석)

  • Jin, Juhye
    • Child Health Nursing Research
    • /
    • v.20 no.1
    • /
    • pp.49-57
    • /
    • 2014
  • Purpose: The purpose of this qualitative study was to explore how adolescent survivors of childhood cancer grieve the death of cancer peers. Methods: Data were obtained from Korean adolescents with cancer between the ages of 13 and 18 (N=12) through semi-structured interviews (face-to-face, telephone, and Internet chatting), observations of the social dynamics of participants in self-help groups, and retrieval of personal Web journals. Based on the grounded theory methodology, data collection and analysis were conducted simultaneously, and constant comparative methods were used. Clarke's situational analysis was adopted, and this paper focused on presenting "how to" and "what we can learn" from this analytic strategy. Results: Mapping examples were visualized using of three modes of maps. Adolescent cancer survivors coped with reminders of the "darkness" that ultimately featured their overall grief. Additionally, adolescents' encounters and avoidance of grief were triggered by introspection and interactions with family and friends. Conclusion: Situational analysis provided an efficient way to analyze the experiences of adolescent survivors of childhood cancer by systematizing possible information within the relational social contexts of the research phenomenon.