• Title/Summary/Keyword: information region classification

Search Result 374, Processing Time 0.027 seconds

A New Object Region Detection and Classification Method using Multiple Sensors on the Driving Environment (다중 센서를 사용한 주행 환경에서의 객체 검출 및 분류 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1271-1281
    • /
    • 2017
  • It is essential to collect and analyze target information around the vehicle for autonomous driving of the vehicle. Based on the analysis, environmental information such as location and direction should be analyzed in real time to control the vehicle. In particular, obstruction or cutting of objects in the image must be handled to provide accurate information about the vehicle environment and to facilitate safe operation. In this paper, we propose a method to simultaneously generate 2D and 3D bounding box proposals using LiDAR Edge generated by filtering LiDAR sensor information. We classify the classes of each proposal by connecting them with Region-based Fully-Covolutional Networks (R-FCN), which is an object classifier based on Deep Learning, which uses two-dimensional images as inputs. Each 3D box is rearranged by using the class label and the subcategory information of each class to finally complete the 3D bounding box corresponding to the object. Because 3D bounding boxes are created in 3D space, object information such as space coordinates and object size can be obtained at once, and 2D bounding boxes associated with 3D boxes do not have problems such as occlusion.

Automatic Sputum Color Image Segmentation for Lung Cancer Diagnosis

  • Taher, Fatma;Werghi, Naoufel;Al-Ahmad, Hussain
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.68-80
    • /
    • 2013
  • Lung cancer is considered to be the leading cause of cancer death worldwide. A technique commonly used consists of analyzing sputum images for detecting lung cancer cells. However, the analysis of sputum is time consuming and requires highly trained personnel to avoid errors. The manual screening of sputum samples has to be improved by using image processing techniques. In this paper we present a Computer Aided Diagnosis (CAD) system for early detection and diagnosis of lung cancer based on the analysis of the sputum color image with the aim to attain a high accuracy rate and to reduce the time consumed to analyze such sputum samples. In order to form general diagnostic rules, we present a framework for segmentation and extraction of sputum cells in sputum images using respectively, a Bayesian classification method followed by region detection and feature extraction techniques to determine the shape of the nuclei inside the sputum cells. The final results will be used for a (CAD) system for early detection of lung cancer. We analyzed the performance of a Bayesian classification with respect to the color space representation and quantification. Our methods were validated via a series of experimentation conducted with a data set of 100 images. Our evaluation criteria were based on sensitivity, specificity and accuracy.

Pattern Classification Based on the Selective Perception Ability of Human Beings (인간 시각의 선택적 지각 능력에 기반한 패턴 분류)

  • Kim Do-Hyeon;Kim Kwang-Baek;Cho Jae-Hyun;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.398-405
    • /
    • 2006
  • We propose a pattern classification model using a selective perception ability of human beings. Generally, human beings recognize an object by putting a selective concentration on it in the region of interest. Much better classification and recognition could be possible by adapting this phenomenon in pattern classification. First, the pattern classification model creates some reference cluster patterns in a usual way. Then it generates an SPM(Selective Perception Map) that reflects the mutual relation of the reference cluster patterns. In the recognition phase, the model applies the SPM as a weight for calculating the distance between an input pattern and the reference patterns. Our experiments show that the proposed classifier with the SPM acquired the better results than other approaches in pattern classification.

Feature-based Gene Classification and Region Clustering using Gene Expression Grid Data in Mouse Hippocampal Region (쥐 해마의 유전자 발현 그리드 데이터를 이용한 특징기반 유전자 분류 및 영역 군집화)

  • Kang, Mi-Sun;Kim, HyeRyun;Lee, Sukchan;Kim, Myoung-Hee
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • Brain gene expression information is closely related to the structural and functional characteristics of the brain. Thus, extensive research has been carried out on the relationship between gene expression patterns and the brain's structural organization. In this study, Principal Component Analysis was used to extract features of gene expression patterns, and genes were automatically classified by spatial distribution. Voxels were then clustered with classified specific region expressed genes. Finally, we visualized the clustering results for mouse hippocampal region gene expression with the Allen Brain Atlas. This experiment allowed us to classify the region-specific gene expression of the mouse hippocampal region and provided visualization of clustering results and a brain atlas in an integrated manner. This study has the potential to allow neuroscientists to search for experimental groups of genes more quickly and design an effective test according to the new form of data. It is also expected that it will enable the discovery of a more specific sub-region beyond the current known anatomical regions of the brain.

Change Detection Using Multispectral Satellite Imagery and Panchromatic Satellite Imagery (다중분광 위성영상과 팬크로매틱 위성영상에 의한 변화 검출)

  • Lee, jin-duk;Han, seung-hee;Cho, hyun-go
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.897-901
    • /
    • 2008
  • The objective of this study is to conduct land cover classification respectively using Landsat TM data collected on Oct., 1985 and KOMPSAT-1 EOC data collected on Jan., 2000 covering Gumi city, Gyeongbuk Province and to detect urban change by comparing between both land cover maps. Multispectral images of Landsat TM have spatial resolution of 30m are well known as useful data for extracting information related to landcover, vegetation classification, urban growth analysis and so forth. In contrast, as KOMPSAT-1 EOC collects panchromatic images with relatively high spatial resolution of 6.6m. We try to analyze how accurate landcover classification result is able to be derived from the panchromatic images. As the results of the study, the KOMPSAT EOC data with high resolution greater than 4 times showed higher classification degree than Landsat TM data. It was ascertained that the built-up region was extended by three to four times in the last 15 years between 1985 and 2000. In the contrast, it was shown that the forest region was decreased by 15% to 27% and the grass region including agricultural region was decreased by 28% to 45%.

  • PDF

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

Studies on design of forest road nets for mechanized yarding operations - Classification of forest site - (기계화(機械化) 집재작업(集材作業)을 위한 노망(路網)의 정비 - 임지(林地)의 분류(分類) -)

  • Cha, Du Song;Cho, Koo Hyun;Ji, Byung Yun
    • Journal of Forest and Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.57-66
    • /
    • 1993
  • The purpose of this study is to offer detailed topographic information for substantially selecting the yarding machine for mechanized yarding operations, classifying the forest site by cluster analysis and principal component analysis, and investigating simultaneously the variables which give much influence on the classification of forest site in forestry build-up region (21, 477ha) of Chunchon Gun, Kwangweon Do. Ten topographic variables were used for the analysis. The results of study were as follows : 1) Gosung region (2, 252ha) was classified into hilly terrain (57%) and steep terrain (43%) and required the tractor prehauling system for the former one and the medium skyline system for latter one, respectively. 2) 65% of Gajung region (2,306ha) and 67% of Kwangpan region (2, 627ha) were classified into steep terrain fitted for the medium skyline system and the portion of both region showed the hilly terrain for the tractor prehauling system. 3) Jiam region (4, 591ha), consisted only of steep terrain, required the medium skyline system. 4) Gunja region (3, 400ha), Sudong region (3, 984ha) and Sinpo region (2, 340ha) were classified into steep terrain, requiring the medium skyline system, with 85%, 75%, and 75%, respectively.

  • PDF

A Robust Fingerprint Classification using SVMs with Adaptive Features (지지벡터기계와 적응적 특징을 이용한 강인한 지문분류)

  • Min, Jun-Ki;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Fingerprint classification is useful to reduce the matching time of a huge fingerprint identification system by categorizing fingerprints into predefined classes according to their global features. Although global features are distributed diversly because of the uniqueness of a fingerprint, previous fingerprint classification methods extract global features non-adaptively from the fixed region for every fingerprint. We propose an novel method that extracts features adaptively for each fingerprint in order to classify various fingerprints effectively. It extracts ridge directional values as feature vectors from the region after searching the feature region by calculating variations of ridge directions, and classifies them using support vector machines. Experimental results with NIST4 database show that we have achieved a classification accuracy of 90.3% for the five-class problem and 93.7% for the four-class problem, and proved the validity of the proposed adaptive method by comparison with non-adaptively extracted feature vectors.

Analysis of Field Infrastructure Improvement Types according to Geographic Characteristics and Spatial Distribution of Upland - Comparison of Muan-gun and Hwasun-gun - (지형 특성과 경작지 분포를 고려한 밭정비 유형 분석 - 무안군과 화순군 비교 -)

  • Lee, Jimin;Yoo, Seung-Hwan;Oh, Yun-Gyeong;Kim, Ara
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.133-144
    • /
    • 2018
  • To suggest the field maintenance plan considering the geographical characteristics of the region, we selected representative regions(plain regione and mountain region) and compared spatial distribution of cultivated land in Muan-gun and Hwasun-gun. Firstly, we examined the distribution characteristics of cultivated land according to the scope of the maintenance object with Fragstats. As a result of that, it was found that the cultivated area except rice paddy had the highest aggregation effect. And then, we developed type classification of maintenance considering geographic characteristics and cultivated crops information. As a result of classification, plain land type Muan region was mostly cultivated land suitable for integrated maintenance. On the other hand, Hwasun, a mountainous terrain, needs small-scale maintenance and road maintenance. Based on these results, it was found that more detailed planning is needed for the upland field infrastructure improvement considering the topographic characteristics.

An Uncertainty Analysis of Topographical Factors in Paddy Field Classification Using a Time-series MODIS (시계열 MODIS 영상을 이용한 논 분류와 지형학적 인자에 따른 불확실성 분석)

  • Yoon, Sung-Han;Choi, Jin-Yong;Yoo, Seung-Hwan;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.67-77
    • /
    • 2007
  • The images of MODerate resolution Imaging Spectroradiometer (MODIS) that provide wider swath and shorter revisit frequency than Land Satellite (Landsat) and Satellite Pour I' Observation de la Terre (SPOT) has been used fer land cover classification with better spatial resolution than National Oceanic and Atmosphere Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR)'s images. Due to the advantages of MODIS, several researches have conducted, however the results for the land cover classification using MODIS images have less accuracy of classification in small areas because of low spatial resolution. In this study, uncertainty of paddy fields classification using MODIS images was conducted in the region of Gyeonggi-do and the relation between this uncertainty of estimating paddy fields and topographical factors was also explained. The accuracy of classified paddy fields was compared with the land cover map of Environmental Geographic Information System (EGIS) in 2001 classified using Landsat images. Uncertainty of paddy fields classification was analyzed about the elevation and slope from the 30m resolution Digital Elevation Model (DEM) provided in EGIS. As a result of paddy classification, user's accuracy was about 41.5% and producer's accuracy was 57.6%. About 59% extracted paddy fields represented over 50 uncertainty in one hundred scale and about 18% extracted paddy fields showed 100 uncertainty. It is considered that several land covers mixed in a MODIS pixel influenced on extracted results and most classified paddy fields were distributed through elevation I, II and slope A region.