• 제목/요약/키워드: information region classification

검색결과 375건 처리시간 0.028초

흉부 CT 영상에서 비소세포폐암 환자의 재발 예측을 위한 종양 내외부 영상 패치 기반 앙상블 학습 (Ensemble Learning Based on Tumor Internal and External Imaging Patch to Predict the Recurrence of Non-small Cell Lung Cancer Patients in Chest CT Image)

  • 이예슬;조아현;홍헬렌
    • 한국멀티미디어학회논문지
    • /
    • 제24권3호
    • /
    • pp.373-381
    • /
    • 2021
  • In this paper, we propose a classification model based on convolutional neural network(CNN) for predicting 2-year recurrence in non-small cell lung cancer(NSCLC) patients using preoperative chest CT images. Based on the region of interest(ROI) defined as the tumor internal and external area, the input images consist of an intratumoral patch, a peritumoral patch and a peritumoral texture patch focusing on the texture information of the peritumoral patch. Each patch is trained through AlexNet pretrained on ImageNet to explore the usefulness and performance of various patches. Additionally, ensemble learning of network trained with each patch analyzes the performance of different patch combination. Compared with all results, the ensemble model with intratumoral and peritumoral patches achieved the best performance (ACC=98.28%, Sensitivity=100%, NPV=100%).

Efficient Object-based Image Retrieval Method using Color Features from Salient Regions

  • An, Jaehyun;Lee, Sang Hwa;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권4호
    • /
    • pp.229-236
    • /
    • 2017
  • This paper presents an efficient object-based color image-retrieval algorithm that is suitable for the classification and retrieval of images from small to mid-scale datasets, such as images in PCs, tablets, phones, and cameras. The proposed method first finds salient regions by using regional feature vectors, and also finds several dominant colors in each region. Then, each salient region is partitioned into small sub-blocks, which are assigned 1 or 0 with respect to the number of pixels corresponding to a dominant color in the sub-block. This gives a binary map for the dominant color, and this process is repeated for the predefined number of dominant colors. Finally, we have several binary maps, each of which corresponds to a dominant color in a salient region. Hence, the binary maps represent the spatial distribution of the dominant colors in the salient region, and the union (OR operation) of the maps can describe the approximate shapes of salient objects. Also proposed in this paper is a matching method that uses these binary maps and which needs very few computations, because most operations are binary. Experiments on widely used color image databases show that the proposed method performs better than state-of-the-art and previous color-based methods.

다단계 계층군집 영상분류법을 이용한 토지 피복 분석 (Analysis of Land-cover Types Using Multistage Hierarchical flustering Image Classification)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제19권2호
    • /
    • pp.135-147
    • /
    • 2003
  • 본 연구는 한반도 위성 영상자료에 다단계 계층군집 영상분류법을 적용하여 관측지역의 피복특성을 분석한다. 다단계 계층군집 영상분류는 크게 두 단계로 이루어진다. 첫 번째 단계는 계층군집에 의해 공간적으로 근접하고 있는 이웃집단간의 결합을 하는 공간확장 영상분할 단계이고 두번째 단계는 결합지역의 공간적 제약 없이 영상분할 단계에서 분할된 집단을 계층군집에 의해 적은 한정적인 수의 클래스로 분류하는 과정이다. 계층군집 영상분류는 수치영상의 계층구조에 근거하여 매 단계 두 개의 집단을 한 개의 집단으로 합병하므로 클래스 수에 따른 분류집단 간의 관계를 나타내는 계층나무를 구성할 수 있다. 실험결과는 계층군집 영상분류에 의해 구성된 계층나무는 토지사용간의 계층구조를 자세히 밝혀주고 토지 피복 특성의 정확한 분석에는 좀 더 자세한 분광정보가 필요함을 보여주고 있다.

영역 기반 영상 검색을 위한 다중클래스 피드백 알고리즘 (Multi-class Feedback Algorithm for Region-based Image Retrieval)

  • 고병철;남재열
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.383-392
    • /
    • 2006
  • 본 논문에서는 영역기반 영상검색의 성능 향상을 위한 피드백 알고리즘으로 다중 클래스를 갖는 확률적 신경망(Probabilistic Neural Networks)을 이용한 방법론을 제안하고 이를 영역기반 영상 검색 시스템인 FRIP(Finding Regions In the Pictures) 시스템에 적용하였다. 본 논문에서 제안하는 피드백 알고리즘은 특정 벡터가 독립적이라는 가정을 할 필요가 없으며 보다 상세한 분류를 위해 추가적인 클래스들을 추가할 수 있도록 허용하고 있다. 또한 단지 4개 층(layer)만을 가지고 있음으로 학습을 위한 계산시간이 적게 든다는 장점이 있다. 추가적으로 다음단계에서의 성능 향상을 위해 분류 단계에서 사용자의 이전 피드백 행동을 모두 히스토리(history)로 모두 기억시켜 놓고 다음 단계를 위한 가중치 학습을 위해 사용하도록 한다. 히스토리를 사용함으로써 제안하는 알고리즘은 사용자의 주관적 의도를 보다 정확하게 파악 할 수 있을 뿐만 아니라 학습을 위해 이전 단계만을 사용 했을 때 발생할 수 있는 성능 감소를 막을 수 있다. 본 논문에서는 Corel-photo CD에서 3000장의 자연 영상을 무작위로 추출하여 기존의 방법론들과 제안하는 방법론의 성능을 측정하여 본 논문에서 제안하는 방법론이 성능이 우수함을 증명하였다.

분할 영역 정보를 이용한 국부 영역에서 차량 검지 및 추적 (Detecting and Tracking Vehicles at Local Region by using Segmented Regions Information)

  • 이대호;박영태
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권10호
    • /
    • pp.929-936
    • /
    • 2007
  • 본 논문에서는 교통 모니터링 시스템에 사용할 수 있는 국부 영역에서 차량 검지와 추적을 수행하는 새로운 기법을 제안하다. 차량 검지와 추적은 각 차선에 미리 설정된 영역에서만 이루어진다. 각 차선에 설정된 국부 영역을 에지 특성과 프레임 차이를 이용하여 여러 개의 분할 영역으로 나누고 분할영역의 통계적 특성과 기하학적 특성에 의해 차량, 도로, 그림자와 전조등 영역으로 분류하여 차량을 검출한다. 검출된 차량은 에지 영상의 정합에 의해 국부 영역내에서 추적하여 차량 속도, 길이, 차간 거리와 도로 점유율과 같은 교통 정보를 산출할 수 있다. 배경 영상을 사용하지 않으므로 다양한 조건에서 사용이 가능하고 다양한 기상, 시간대와 장소에서 90.16%의 높은 차량 검출의 정확도를 나타냈다. 동작 환경에서 카메라의 각도, 방향과 조리개 설정이 조정되면 아주 높은 정확도의 교통 모니터링 시스템의 핵심기술로 사용될 수 있을 것으로 기대된다.

EFFECTS OF RANDOMIZING PATTERNS AND TRAINING UNEQUALLY REPRESENTED CLASSES FOR ARTIFICIAL NEURAL NETWORKS

  • Kim, Young-Sup;Coleman Tommy L.
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.45-52
    • /
    • 2002
  • Artificial neural networks (ANN) have been successfully used for classifying remotely sensed imagery. However, ANN still is not the preferable choice for classification over the conventional classification methodology such as the maximum likelihood classifier commonly used in the industry production environment. This can be attributed to the ANN characteristic built-in stochastic process that creates difficulties in dealing with unequally represented training classes, and its training performance speed. In this paper we examined some practical aspects of training classes when using a back propagation neural network model for remotely sensed imagery. During the classification process of remotely sensed imagery, representative training patterns for each class are collected by polygons or by using a region-growing methodology over the imagery. The number of collected training patterns for each class may vary from several pixels to thousands. This unequally populated training data may cause the significant problems some neural network empirical models such as back-propagation have experienced. We investigate the effects of training over- or under- represented training patterns in classes and propose the pattern repopulation algorithm, and an adaptive alpha adjustment (AAA) algorithm to handle unequally represented classes. We also show the performance improvement when input patterns are presented in random fashion during the back-propagation training.

  • PDF

경계선 보존 알고리즘 기반의 디블로킹 필터와 효율적인 VLSI 구조 (Deblocking Filter Based on Edge-Preserving Algorithm And an Efficient VLSI Architecture)

  • 트풍퀑빈;김지훈;김영철
    • 한국통신학회논문지
    • /
    • 제36권11C호
    • /
    • pp.662-672
    • /
    • 2011
  • 본 논문은 새로운 경계선 보존 알고리즘을 이용하여 블록화 현상을 제거하는 디블로킹 필터와 HD해상도의 실시간 영상처리가 가능한 디블로킹 필터의 VLSI구조를 제안한다. 기존의 블록 분류 기반의 접근 방법과 달리 제안된 알고리즘은 픽셀 분류 기반 접근을 사용한다. 또한 제안된 경계선 보존 맵은 픽셀을 경계선 영역과 평탄 영역으로 분류하며, 블록화 현상 제거에 사용되는 오프셋 필터와 경계선 보존 필터의 기반이 된다. 이를 바탕으로 제안된 디블로킹 필터의 VLSI구조는 고연산량 처리를 위하여 블록 전체에 파이프라인 기법을 적용하였다. 또한 블록 버퍼를 위한 메모리 절감 구조는 메모리의 사용을 최적화 시킨다. 본 필터는 VHDL을 이용한 설계를 통하여 CycloneII FPGA상에서 구현된 구조의 동작을 검증 후, Synopsys의 Design Compiler와 ANAM 0.25 ${\mu}m$ CMOS cell library로 합성하여 칩으로 구현하였을 때의 성능을 예측하였다. 제안된 알고리즘의 실험 결과는 세밀한 영상성분을 보존하면서 효과적으로 블록화 현상을 제거하며, 픽셀 분류 기반에서 제안된 알고리즘은 블록 분류 기반보다 PSNR 성능이 우수함을 보였다.

문맥 정보를 이용한 분류 기반 무릎 뼈 검출 기법 (Classification based Knee Bone Detection using Context Information)

  • 신승연;박상현;윤일동;이상욱
    • 방송공학회논문지
    • /
    • 제18권3호
    • /
    • pp.401-408
    • /
    • 2013
  • 본 논문에서는 영상 내의 문맥 특징(context feature)과 외형 특징(appearance feature)을 함께 학습함으로써 의료영상 내의 비슷한 외형 특징을 가지는 장기들을 자동으로 검출하는 기법을 제안한다. 기존 검출 기법들은 외형 특징 정보만을 학습하여 분류기(classifier)를 생성하였기 때문에 의료영상 내에 외형이 비슷한 장기들이 다수 포함되어 있는 경우 검출 오류가 발생하였다. 제안하는 기법은 외형 특징을 이용하여 학습된 분류기를 통해 얻은 확률 값들을 바탕으로 관심 복셀(voxel) 주변의 확률 분포 특징을 반복적으로 학습함으로써 문맥 정보를 포함하는 분류기를 생성한다. 또한, 실험 단계(test stage)에서 '지역 기반 투표 방식'(region based voting scheme)을 도입함으로써 효율성과 정확성을 향상시킨다. 제안하는 기법의 성능 평가를 위해 SKI10 무릎 관절 데이터 셋 내에서 외형 특징이 비슷한 대퇴골(femur)과 경골(tibia)을 검출하는 실험을 진행하였다. 실험 결과를 통해 제안하는 기법이 외형 특징만을 이용했던 검출 기법에 비해 개선된 검출 성능을 보이고 있음을 확인할 수 있었다.

간 경변 진단시 신경망을 이용한 분류기 구현 (Implementation of the Classification using Neural Network in Diagnosis of Liver Cirrhosis)

  • 박병래
    • 지능정보연구
    • /
    • 제11권1호
    • /
    • pp.17-33
    • /
    • 2005
  • 자기공명영상과 계층적 신경망을 이용하여 간경변증을 단계별로 분류하고자 하였다. 내원한 231명의 데이터를 분석하였으며, 각 단계별 분류는 정상,1, 2, 3단계로 분류하였다. TI강조 자기공명 간 영상으로부터 정상 간 실질과 간 경변 결절을 추출하고, 간 경화증의 단계를 객관적으로 해석 분류하였다. 간 경변 분류기 구현은 계층적 신경망을 이용하였고, 명암도 분석과 간 결절 특성을 통하여 정상간과 3단계의 간 경변으로 구분하였다. 제안한 신경망 분류기는 오류 역전파 알고리듬을 이용하였다. 분류결과 인식율이 정상군은 $100\%$, 1 단계는 $82.8\%$, 2 단계는 $87.1\%$, 3 단계는 $84.2\%$의 분류율을 나타내었다. 신경망 분류 결과와 전문의 판독 결과를 서로 비교한 결과 인식률은 매우 높게 나타났다. 만일 더욱더 충분한 데이터나 파라미터를 가지고 지속적으로 수행한다면 간 경변 환자들에게 임상적으로 지원하는 도구뿐만 아니라 의료전문 신경망으로도 기대된다.

  • PDF

교육용 도서 영상을 위한 효과적인 객체 자동 분류 기술 (Efficient Object Classification Scheme for Scanned Educational Book Image)

  • 최영주;김지해;이영운;이종혁;홍광수;김병규
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권7호
    • /
    • pp.1323-1331
    • /
    • 2017
  • 오늘날 저작권 관련 산업이 사회, 경제적으로 큰 영향을 미치는 대규모 산업으로 성장하였음에도 불구하고 저작물에 대한 소유권 및 저작권에 대한 문제가 끊임없이 발생하고 있으며 특히 이미지 저작권과 관련된 연구는 거의 진행되지 않는 상태이다. 본 연구에서는 기존의 문서 영상처리 기술과 딥 러닝 기술을 융합하여 교육용 도서 영상에서의 객체 자동 추출 및 분류 기술 시스템을 제안한다. 제안된 기술은 먼저 잡음을 제거한 후, 시각적 주의(visual attention) 기반 영역 추출 과정을 수행한다. 추출된 영역을 기반으로 블록화 작업을 수행하고, 각 블록을 그림인지 아니면 문자 영역인지를 분류한다. 마지막으로 추출된 그림 영역 주위를 검색하여 캡션 영역을 추출한다. 본 연구에서 진행한 성능 평가 결과, 그림 영역은 최대 97% 정확도를 보이며, 그림 및 캡션 영역 추출에 있어서는 평균 83%의 정확도를 보여 준다.