• Title/Summary/Keyword: information region classification

Search Result 375, Processing Time 0.024 seconds

Motion Estimation-based Human Fall Detection for Visual Surveillance

  • Kim, Heegwang;Park, Jinho;Park, Hasil;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.327-330
    • /
    • 2016
  • Currently, the world's elderly population continues to grow at a dramatic rate. As the number of senior citizens increases, detection of someone falling has attracted increasing attention for visual surveillance systems. This paper presents a novel fall-detection algorithm using motion estimation and an integrated spatiotemporal energy map of the object region. The proposed method first extracts a human region using a background subtraction method. Next, we applied an optical flow algorithm to estimate motion vectors, and an energy map is generated by accumulating the detected human region for a certain period of time. We can then detect a fall using k-nearest neighbor (kNN) classification with the previously estimated motion information and energy map. The experimental results show that the proposed algorithm can effectively detect someone falling in any direction, including at an angle parallel to the camera's optical axis.

Rank-based Multiclass Gene Selection for Cancer Classification with Naive Bayes Classifiers based on Gene Expression Profiles (나이브 베이스 분류기를 이용한 유전발현 데이타기반 암 분류를 위한 순위기반 다중클래스 유전자 선택)

  • Hong, Jin-Hyuk;Cho, Sung-Bae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.8
    • /
    • pp.372-377
    • /
    • 2008
  • Multiclass cancer classification has been actively investigated based on gene expression profiles, where it determines the type of cancer by analyzing the large amount of gene expression data collected by the DNA microarray technology. Since gene expression data include many genes not related to a target cancer, it is required to select informative genes in order to obtain highly accurate classification. Conventional rank-based gene selection methods often use ideal marker genes basically devised for binary classification, so it is difficult to directly apply them to multiclass classification. In this paper, we propose a novel method for multiclass gene selection, which does not use ideal marker genes but directly analyzes the distribution of gene expression. It measures the class-discriminability by discretizing gene expression levels into several regions and analyzing the frequency of training samples for each region, and then classifies samples by using the naive Bayes classifier. We have demonstrated the usefulness of the proposed method for various representative benchmark datasets of multiclass cancer classification.

A Comparative Study of Algorithms for Multi-Aspect Target Classifications (다중 각도 정보를 이용한 표적 구분 알고리즘 비교에 관한 연구)

  • 정호령;김경태;김효태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.579-589
    • /
    • 2004
  • The radar signals are generally very sensitive to relative orientations between radar and target. Thus, the performance of a target recognition system significantly deteriorates as the region of aspect angles becomes broader. To address this difficulty, in this paper, we propose a method based on the multi-aspect information in order to improve the classification capability ever for a wide angular region. First, range profiles are used to extract feature vectors based on the central moments and principal component analysis(PCA). Then, a classifier with the use of multi-aspect information is applied to them, yielding an additional improvement of target recognition capability. There are two different strategies among the classifiers that can fuse the information from multi-aspect radar signals: independent methodology and dependent methodology. In this study, the performances of the two strategies are compared within the frame work of target recognition. The radar cross section(RCS) data of six aircraft models measured at compact range of Pohang University of Science and Technology are used to demonstrate and compare the performances of the two strategies.

Edge-Directed Color Interpolation on Disjointed Color Filter Array (분리된 컬러 필터 배열을 이용한 에지 방향 컬러 보간 방법)

  • Oh, Hyun-Mook;Yoo, Du-Sic;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • In this paper, we present a color interpolation algorithm that uses novel edge direction estimator and region classifier. The proposed edge direction estimator accurately determines the edge direction based on the correlation between the images obtained by the channel separated and down-sampled Bayer color filter array(CFA) pattern. The correlation is defined based on the similarity between the edge direction in the local region of the image and the shifting direction of the images. Also, the region of an image is defined as the flat, the edge, and the pattern-edge regions, where the edges are appeared repeatedly. When all the pixels in the image are classified into the three different regions, each pixel is interpolated horizontally or vertically according to the estimated direction. Experimental results show that the proposed algorithm outperforms the conventional edge-directed methods on objective and subjective criteria.

Performance Comparison of the Optimizers in a Faster R-CNN Model for Object Detection of Metaphase Chromosomes (중기 염색체 객체 검출을 위한 Faster R-CNN 모델의 최적화기 성능 비교)

  • Jung, Wonseok;Lee, Byeong-Soo;Seo, Jeongwook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1357-1363
    • /
    • 2019
  • In this paper, we compares the performance of the gredient descent optimizers of the Faster Region-based Convolutional Neural Network (R-CNN) model for the chromosome object detection in digital images composed of human metaphase chromosomes. In faster R-CNN, the gradient descent optimizer is used to minimize the objective function of the region proposal network (RPN) module and the classification score and bounding box regression blocks. The gradient descent optimizer. Through performance comparisons among these four gradient descent optimizers in our experiments, we found that the Adamax optimizer could achieve the mean average precision (mAP) of about 52% when considering faster R-CNN with a base network, VGG16. In case of faster R-CNN with a base network, ResNet50, the Adadelta optimizer could achieve the mAP of about 58%.

Intensity Gradient filter and Median Filter based Video Sequence Deinterlacing Using Texture Detection (텍스쳐 감지를 이용한 화소값 기울기 필터 및 중간값 필터 기반의 비디오 시퀀스 디인터레이싱)

  • Kang, Kun-Hwa;Ku, Su-Il;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.371-379
    • /
    • 2009
  • In this paper, we proposed new de-interlacing algorithm for video data using intensity gradient filter and median filter with texture detection in the image block. We first introduce the texture detection. According to texture detection, the current region is determined into smooth region or texture region. In case that the smooth region interpolated by median filter. In addition, in case of the texture region, we calculate missing pixel value using intensity gradient filter. Therefore, we analyze the local region feature using the texture detection and classify each missing pixel into two categories. And then, based on the classification result, a different de-interlacing algorithm is activated in order to obtain the best performance. Experimental results show that the proposed algorithm performs well with a variety of moving sequences compared with conventional intra-field method in the literature.

Content-based image retrieval using region-based image querying (영역 기반의 영상 질의를 이용한 내용 기반 영상 검색)

  • Kim, Nac-Woo;Song, Ho-Young;Kim, Bong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.990-999
    • /
    • 2007
  • In this paper, we propose the region-based image retrieval method using JSEG which is a method for unsupervised segmentation of color-texture regions. JSEG is an algorithm that discretizes an image by color classification, makes the J-image by applying a region to window mask, and then segments the image by using a region growing and merging. The segmented image from JSEG is given to a user as the query image, and a user can select a few segmented regions as the query region. After finding the MBR of regions selected by user query and generating the multiple window masks based on the center point of MBR, we extract the feature vectors from selected regions. We use the accumulated histogram as the global descriptor for performance comparison of extracted feature vectors in each method. Our approach fast and accurately supplies the relevant images for the given query, as the feature vectors extracted from specific regions and global regions are simultaneously applied to image retrieval. Experimental evidence suggests that our algorithm outperforms the recent image-based methods for image indexing and retrieval.

A Study of Post-processing Methods of Clustering Algorithm and Classification of the Segmented Regions (클러스터링 알고리즘의 후처리 방안과 분할된 영역들의 분류에 대한 연구)

  • Oh, Jun-Taek;Kim, Bo-Ram;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.7-16
    • /
    • 2009
  • Some clustering algorithms have a problem that an image is over-segmented since both the spatial information between the segmented regions is not considered and the number of the clusters is defined in advance. Therefore, they are difficult to be applied to the applicable fields. This paper proposes the new post-processing methods, a reclassification of the inhomogeneous clusters and a region merging using Baysian algorithm, that improve the segmentation results of the clustering algorithms. The inhomogeneous cluster is firstly selected based on variance and between-class distance and it is then reclassified into the other clusters in the reclassification step. This reclassification is repeated until the optimal number determined by the minimum average within-class distance. And the similar regions are merged using Baysian algorithm based on Kullbeck-Leibler distance between the adjacent regions. So we can effectively solve the over-segmentation problem and the result can be applied to the applicable fields. Finally, we design a classification system for the segmented regions to validate the proposed method. The segmented regions are classified by SVM(Support Vector Machine) using the principal colors and the texture information of the segmented regions. In experiment, the proposed method showed the validity for various real-images and was effectively applied to the designed classification system.

A Land Capability Analysis in Kyungsan, Korea Using Geographic Information System (지리정보시스템(GIS)을 이용한 경산시의 토지잠재력 분석)

  • 오정학;정성관
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.34-44
    • /
    • 1998
  • The purpose of this study is to provide the basic data for land use in the future, which result from analyzing land use, obtained after studying on the natural environment by Geographic Information System and Remote Sensing. The results of this study are as follows : ·According to the classification of land-cover, agricultural land use is relatively prominent except for overall natural covering. According to the average value of Green Vegetation Index class, the average value of GVI is 3.0, and 45% of the regions have relatively good condition of floral state. ·With a view to natural environment, the survey shows that the altitude of 90% of the total areas is below 400m, and most of them are flattened or moderately-inclined area. Therefore, this region has a good condition to be used for development. · The area for the first class in preservation degree of natural scenery of Namcheon-Myun is 2.3% of the total areas. According to the results about unstable areas on all sides, unstable districs are distributed in so small-scale units that they will be safe from some damages drawn by developing activity. But we have to consider every aspects for the future development of them. In this study, the natural environment-variables are regarded firstly, and effective designation of the land with natural environment is researched too. However, to establish more practical developing plan, ecological and human variables should be regarded.

  • PDF

A Study on the Classification and Causative Factor of Vacant Houses - Focused on the Incheon Metropolitan City - (빈집발생의 유형과 발생에 영향을 미치는 요인에 관한 연구 - 인천광역시 사례를 중심으로 -)

  • Lim, Chang-Il;Na, In-Su
    • Journal of KIBIM
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The vacant houses commonly observed in urban aging are considered to be representative signs of urban decline. Vacant houses are themselves vulnerable to security, and in particular, they are exposed to disasters due to poor management, which can accelerate the decline of the area. This study is to classify the area and analyze the causes and characteristics of the occurrence of vacant houses by type based on the data through the survey on the vacant houses in Incheon. This research analyze vacant house data survey so to characterized and categorized types of vacant houses. The criteria of vacant houses analysis are population density, population growth, aging extent. In conclusion there are four types of region in Incheon area according to housing types, hazard classes, building age and building areas. Type A is inner city, type B is mixed, type C is expandable and type D is unsular types.