• Title/Summary/Keyword: information region classification

Search Result 375, Processing Time 0.03 seconds

Spatio-temporal change detection of land-use and urbanization in rural areas using GIS and RS - Case studies of Yongin and Anseong regions - (GIS와 RS를 이용한 농촌지역 토지이용 및 도시화 변화현상의 시공간 탐색 - 용인 및 안성지역을 중심으로 -)

  • Gao, Yujie;Kim, Dae-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.153-162
    • /
    • 2011
  • This study analyzed the spatio-temporal change detection of land-use and urbanization in Yongin and Anseong regions, Kyunggi Province, using three Landsat-5 TM images for 1990, 1996, and 2000. Remote sensing (RS) and geographic information system (GIS) techniques were used for image classification and result analysis. Six land-use types were classified using supervised maximum likelihood classification. In the two study areas, the land-use changed significantly, especially the decrease of arable land and forest and increase of built-up area. Spatially, the urban expansion of Yongin region showed a spreading trend mainly along the national road and expressways. But in Anseong region the expansion showed 'urban sprawl phenomenon' with irregular shape like starfish. Temporally, the urban expansion showed disparity - the growth rates of urbanized area rose from the period 1990-1996 to 1996-2000 in both study areas. The increased built-up areas were converted mainly from paddy, dry vegetation, and forest.

Interference Aware Fractional Frequency Reuse using Dynamic User Classification in Ultra-Dense HetNets

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Small-cells in heterogeneous networks are one of the important technologies to increase the coverage and capacity in 5G cellular networks. However, due to the randomly arranged small-cells, co-tier and cross-tier interference increase, deteriorating the system performance of the network. In order to manage the interference, some channel management methods use fractional frequency reuse(FFR) that divides the cell coverage into the inner region(IR) and outer region(OR) based on the distance from the macro base station(MBS). However, since it is impossible to properly measure the distance in the method with FFR, we propose a new interference aware FFR(IA-FFR) method to enhance the system performance. That is, the proposed IA-FFR method divides the MUEs and SBSs into the IR and OR groups based on the signal to interference plus noise ratio(SINR) of macro user equipments(MUEs) and received signals strength of small-cell base stations(SBSs) from the MBS, respectively, and then dynamically assigns subchannels to MUEs and small-cell user equipments. As a result, the proposed IA-FFR method outperforms other methods in terms of the system capacity and outage probability.

Extraction of Classification Boundary for Fuzzy Partitions and Its Application to Pattern Classification (퍼지 분할을 위한 분류 경계의 추출과 패턴 분류에의 응용)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.685-691
    • /
    • 2008
  • The selection of classification boundaries in fuzzy rule- based classification systems is an important and difficult problem. So various methods based on learning processes such as neural network, genetic algorithm, and so on have been proposed for it. In a previous study, we pointed out the limitation of the methods and discussed a method for fuzzy partitioning in the overlapped region on feature space in order to overcome the time-consuming when the additional parameters for tuning fuzzy membership functions are necessary. In this paper, we propose a method to determine three types of classification boundaries(i.e., non-overlapping, overlapping, and a boundary point) on the basis of statistical information of the given dataset without learning by extending the method described in the study. Finally, we show the effectiveness of the proposed method through experimental results applied to pattern classification problems using the modified IRIS and standard IRIS datasets.

High Resolution Satellite Image Segmentation Algorithm Development Using Seed-based region growing (시드 기반 영역확장기법을 이용한 고해상도 위성영상 분할기법 개발)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.421-430
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Improved Seeded Region Growing (ISRG) and Region merging. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained multi-spectral edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying ISRG to consider spectral and edge information. Finally the region merging process, integrating region texture and spectral information, was carried out to get the final segmentation result. The accuracy assesment was done using the unsupervised objective evaluation method for evaluating the effectiveness of the proposed method. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

A Comparative Study on Suitable SVM Kernel Function of Land Cover Classification Using KOMPSAT-2 Imagery (KOMPSAT-2 영상의 토지피복분류에 적합한 SVM 커널 함수 비교 연구)

  • Kang, Nam Yi;Go, Sin Young;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.19-25
    • /
    • 2013
  • Recently, the high-resolution satellite images is used the land cover and status data for the natural resources or environment management very helpful. The SVM algorithm of image processing has been used in various field. However, classification accuracy by SVM algorithm can be changed by various kernel functions and parameters. In this paper, the typical kernel function of the SVM algorithm was applied to the KOMPSAT-2 image and than the result of land cover performed the accuracy analysis using the checkpoint. Also, we carried out the analysis for selected the SVM kernel function from the land cover of the target region. As a result, the polynomial kernel function is demonstrated about the highest overall accuracy of classification. And that we know that the polynomial kernel and RBF kernel function is the best kernel function about each classification category accuracy.

Object Image Classification Using Hierarchical Neural Network (계층적 신경망을 이용한 객체 영상 분류)

  • Kim Jong-Ho;Kim Sang-Kyoon;Shin Bum-Joo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2006
  • In this paper, we propose a hierarchical classifier of object images using neural networks for content-based image classification. The images for classification are object images that can be divided into foreground and background. In the preprocessing step, we extract the object region and shape-based texture features extracted from wavelet transformed images. We group the image classes into clusters which have similar texture features using Principal Component Analysis(PCA) and K-means. The hierarchical classifier has five layes which combine the clusters. The hierarchical classifier consists of 59 neural network classifiers learned with the back propagation algorithm. Among the various texture features, the diagonal moment was the most effective. A test with 1000 training data and 1000 test data composed of 10 images from each of 100 classes shows classification rates of 81.5% and 75.1% correct, respectively.

  • PDF

Deep Learning based Image Recognition Models for Beef Sirloin Classification (딥러닝 이미지 인식 기술을 활용한 소고기 등심 세부 부위 분류)

  • Han, Jun-Hee;Jung, Sung-Hun;Park, Kyungsu;Yu, Tae-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • This research examines deep learning based image recognition models for beef sirloin classification. The sirloin of beef can be classified as the upper sirloin, the lower sirloin, and the ribeye, whereas during the distribution process they are often simply unified into the sirloin region. In this work, for detailed classification of beef sirloin regions we develop a model that can learn image information in a reasonable computation time using the MobileNet algorithm. In addition, to increase the accuracy of the model we introduce data augmentation methods as well, which amplifies the image data collected during the distribution process. This data augmentation enables to consider a larger size of training data set by which the accuracy of the model can be significantly improved. The data generated during the data proliferation process was tested using the MobileNet algorithm, where the test data set was obtained from the distribution processes in the real-world practice. Through the computational experiences we confirm that the accuracy of the suggested model is up to 83%. We expect that the classification model of this study can contribute to providing a more accurate and detailed information exchange between suppliers and consumers during the distribution process of beef sirloin.

Design and Implementation of Electronic Culture Atlas for Oversea Region Research (해외지역연구를 위한 전자문화지도의 설계 및 구현)

  • Kang, Ji-Hoon;Moon, Sang-Ho;Yu, Young-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1174-1180
    • /
    • 2013
  • In recent years, there are many awareness and demand for digital convergence of the future. In information technology, especially, convergence with other studies such as regional studies, literature and humanities should be needed because information technology is closely related to real life. Culture atlas represents various aspects related to culture visually using points, arcs, and more in the map. Thus, it should be an available tool to survey cultures efficiently in digital environments. For oversea region study, especially Mediterranean region research, we suggest the way to apply electronic culture atlas in this paper. In detail, design and implementation a study on Electronic Culture Atlas for overseas area. Research results for oversea regional studies can be expressed visually by utilizing digital culture map implemented in this paper. Therefore, digital culture atlas should be used as convergence media between information technology and other studies such as regional studies, humanities and so on, tools for oversea regional studies, and exhibition of research results.

Segmentation and Contents Classification of Document Images Using Local Entropy and Texture-based PCA Algorithm (지역적 엔트로피와 텍스처의 주성분 분석을 이용한 문서영상의 분할 및 구성요소 분류)

  • Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.377-384
    • /
    • 2009
  • A new algorithm in order to classify various contents in the image documents, such as text, figure, graph, table, etc. is proposed in this paper by classifying contents using texture-based PCA, and by segmenting document images using local entropy-based histogram. Local entropy and histogram made the binarization of image document not only robust to various transformation and noise, but also easy and less time-consuming. And texture-based PCA algorithm for each segmented region was taken notice of each content in the image documents having different texture information. Through this, it was not necessary to establish any pre-defined structural information, and advantages were found from the fact of fast and efficient classification. The result demonstrated that the proposed method had shown better performances of segmentation and classification for various images, and is also found superior to previous methods by its efficiency.

Improvement of Land Cover / Land Use Classification by Combination of Optical and Microwave Remote Sensing Data

  • Duong, Nguyen Dinh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.426-428
    • /
    • 2003
  • Optical and microwave remote sensing data have been widely used in land cover and land use classification. Thanks to the spectral absorption characteristics of ground object in visible and near infrared region, optical data enables to extract different land cover types according to their material composition like water body, vegetation cover or bare land. On the other hand, microwave sensor receives backscatter radiance which contains information on surface roughness, object density and their 3-D structure that are very important complementary information to interpret land use and land cover. Separate use of these data have brought many successful results in practice. However, the accuracy of the land use / land cover established by this methodology still has some problems. One of the way to improve accuracy of the land use / land cover classification is just combination of both optical and microwave data in analysis. In this paper for the research, the author used LANDSAT TM scene 127/45 acquired on October 21, 1992, JERS-1 SAR scene 119/265 acquired on October 27, 1992 and aerial photographs taken on October 21, 1992. The study area has been selected in Hanoi City and surrounding area, Vietnam. This is a flat agricultural area with various land use types as water rice, secondary crops like maize, cassava, vegetables cultivation as cucumber, tomato etc. mixed with human settlement and some manufacture facilities as brick and ceramic factories. The use of only optical or microwave data could result in misclassification among some land use features as settlement and vegetables cultivation using frame stages. By combination of multitemporal JERS-1 SAR and TM data these errors have been eliminated so that accuracy of the final land use / land cover map has been improved. The paper describes a methodology for data combination and presents results achieved by the proposed approach.

  • PDF