• Title/Summary/Keyword: information region classification

Search Result 375, Processing Time 0.023 seconds

영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식 (Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm)

  • 김광백;김성신
    • 한국정보통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.1153-1158
    • /
    • 2006
  • 자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 자궁 경부 세포진 영상은 배경과 세포의 영역이 확실히 구분되지 않는 경우가 많기 때문에 이들을 확실히 구분하는 것이 매우 중요하다. 본 논문에서는 이러한 문제점을 해결하기 위해 자궁 경부 세포진 영상에서 Region growing 기법을 적용하여 세포 영상을 분할한다. Region growing 기법은 화소간의 유사도를 측정하여 영역을 확장하여 분할하는 방법이다. 세포와 배경이 분할된 영상을 일정 임계값을 이용하여 영상을 이진화 한 후, 8방향 윤곽선 추적 알고리즘을 이용해 세포 영역을 추출한다. 추출된 세포 영역을 원 영상인 RGB 컬러로 변환한 후에 K-means 알고리즘을 적용하여 각 세포 영역의 RGB 화소를 R, G, B 채널로 각각 분리하여 클러스터링 한다. 클러스터링된 각 각의 R, G, B 채널의 클러스터 값을 이용하여 HSI 모델로 변환시킨 후에 세포핵 영역의 Hue 정보를 추출한다. 추출된 세포핵의 특징을 오류 역전파 알고리즘을 적용하여 정상 세포와 비정상 세포를 분류하고 인식한다.

웨이브렛 변환과 영역 분류를 이용한 영상 검색 (Image Retrieval using the wavelet transform and region classification)

  • 황도연;유강수;박영석;박정호;곽훈성
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.349-351
    • /
    • 2001
  • 본 논문에서는 원 영상의 영역 분류와 웨이브렛 변환을 이용하여 영상의 밝기 변화에 관계없이 영상 검색이 가능한 알고리즘을 제안하였다. 이러한 방식을 통해 영상 전체에 대해 검색이 수행되지 않고, 영역 분류 결과인 블록맵과 변환 대역에서의 분산값 등 매우 소량의 정보만을 저장하고 이를 기반으로 영상 검색이 수행되므로 매우 빠르고 효과적인 검색이 가능함을 실험을 통해 확인하였다.

  • PDF

딥러닝을 이용한 객체 검출 알고리즘 (Popular Object detection algorithms in deep learning)

  • 강동연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.427-430
    • /
    • 2019
  • Object detection is applied in various field. Autonomous driving, surveillance, OCR(optical character recognition) and aerial image etc. We will look at the algorithms that are using to object detect. These algorithms are divided into two methods. The one is R-CNN algorithms [2], [5], [6] which based on region proposal. The other is YOLO [7] and SSD [8] which are one stage object detector based on regression/classification.

주성분 분석과 지리정보시스템을 이용한 충청북도 농촌 지역의 유형화 (A Classification of Rural Area Using Principal Component Analysis and GIS)

  • 박진선;주호길;윤성수;리신호
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.131-134
    • /
    • 2003
  • The purpose of this study is for classification to do a short distance rural area with the object to the center to Cheongju area. This study used principal component analysis and geography information system, and it was disciplined oneself. It was done a study object region to Cheongju-si, Cheongwon-gun Goesan-gun, Eumseong-gun, and we divided an index by of 22 large class and 104 small class, and the SPSS analyzed the Principal Component Analysis. We used a Geography Information System, and it was made graphical data by the results that have finished Principal Component Analysis.

  • PDF

베이지안 분류 기반의 입 모양을 이용한 한글 모음 인식 시스템 (Recognition of Korean Vowels using Bayesian Classification with Mouth Shape)

  • 김성우;차경애;박세현
    • 한국멀티미디어학회논문지
    • /
    • 제22권8호
    • /
    • pp.852-859
    • /
    • 2019
  • With the development of IT technology and smart devices, various applications utilizing image information are being developed. In order to provide an intuitive interface for pronunciation recognition, there is a growing need for research on pronunciation recognition using mouth feature values. In this paper, we propose a system to distinguish Korean vowel pronunciations by detecting feature points of lips region in images and applying Bayesian based learning model. The proposed system implements the recognition system based on Bayes' theorem, so that it is possible to improve the accuracy of speech recognition by accumulating input data regardless of whether it is speaker independent or dependent on small amount of learning data. Experimental results show that it is possible to effectively distinguish Korean vowels as a result of applying probability based Bayesian classification using only visual information such as mouth shape features.

블록 경계 영역 분류를 이용한 블록화 현상 제거 기법의 성능 비교 (Performance Comparison of Blocking Artifact Reduction Using a Block Boundary Region Classification)

  • 소현주;장익훈;김남철
    • 한국통신학회논문지
    • /
    • 제24권10B호
    • /
    • pp.1921-1936
    • /
    • 1999
  • 본 논문에서는 블록 기반 변환 부호화 영상에서 나타나는 블록화 현상을 분석하고 그 특성에 따라 각 블록 경계를 4개의 영역으로 분류하는 방법을 제안하였다. 그리고 제안한 블록 경계 영역 분류 방법을 이용하여 성능이 우수한 몇 가지 블록화 현상 제거 기법들의 성능을 비교하였다. 제안된 블록 경계 영역 분류 방법에서는 각 수평, 수직 블록 경계를 EQ 영역, BA 영역, 그리고 AE 영역의 4개의 영역으로 분류한다. 블록화 현상 제거기법으로는 LOT, Kim의 웨이브렛 영역에서의 필터링 방법, Yang의 POCS 방법, Paek의 POCS 방법, Jang의 CM 방법을 선택하였다. 실험결과, 제안한 블록 경계 영역 분류 방법으로 블록 경계의 영역들이 블록화 현상에 의한 불연속의 특성을 잘 나타내는 것을 알 수 있었다. 그리고 웨이블렛 변환을 이용하는 블록화 현상 제거 기법들이 대체적으로 우수한 성능을 나타냄을 알 수 있었다.

  • PDF

SIFT 기반의 약통 분류 시스템 (Medicine-Bottle Classification Algorithm Based on SIFT)

  • 박길흠;조웅호
    • 한국산업정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.77-85
    • /
    • 2014
  • 약화 사고 방지를 위한 약통 분류 알고리즘은 약통의 회전, 크기변화, 위치 이동 등의 기하학적 변화에 강인하여야 한다. 본 논문에서는 기하학적 변화에 강인한 SIFT(Scale Invariant Feature Transform)을 이용하여 약통을 실시간으로 정확하게 분류하는 알고리즘을 제안한다. 먼저, 약통 분류를 위해서 두드러진 특징으로 약통의 크기 정보인 최외곽 사각형을 이용하여 약통을 크기 별로 분류한다. 다음으로 최외곽 사각형내에서 라벨 영역을 추출하고, 회전을 고려한 관심영역을 추출한다. 그리고 추출된 관심영역에 대해 SIFT를 이용하여 약통을 분류한다. 또한 SIFT의 처리 속도를 개선하기 위하여 SIFT의 옥타브 수를 간소화하였다. 250개의 약통 영상에 대해 제안한 알고리즘의 성능을 평가한 결과, 모든 약통에 대해 정확히 분류함을 확인하였다. 또한 SIFT의 피라미드 레벨 간소화에 의해 처리 시간을 2배 이상 향상됨을 확인하였다.

문서 영상의 영역 분류와 회전각 검출 (A Block Classification and Rotation Angle Extraction for Document Image)

  • 모문정;김욱현
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.509-516
    • /
    • 2002
  • 본 논문에서는 그림, 글자, 표, 직선 등과 같은 다양한 정보를 포함하는 문서 영상 인식에 대한 효율적인 알고리즘을 제안한다. 이 시스템은 문서영상의 기울짐을 보정하기 위한 회전각검출 단계, 불필요한 배경영역을 제거하는 단계, 문서영상에 내재된 각 구성요소를 검출하는 분류 단계로 구성된다. 알고리즘은 문서의 기울어짐에 의해서 발생되는 오류를 최소화하기 위한 회전각 검출과정과 검출된 회전각을 기반으로 문서를 보정하는 전처리단계를 수행한다. 입력된 문서영상의 수평성분과 수직성분만을 이용하여 회전각을 검출하고, 문서의 구성요소 검출과정에서 불필요한 배경영역을 제거함으로써 계산시간을 최소화하였다. 그리고 영상에 내재된 그림영역, 글자영역, 표영역, 직선영역 둥의 다양한 구성요소를 분류한다. 제안한 문서 인식 시스템의 성능 평가를 위해서 다양한 문서영상에 제안한 방법을 적용하고 성공적인 결과를 보인다.

Quadtree와 영역확장법에 의한 LiDAR 데이터의 지면점 추출 (Extraction of Ground Points from LiDAR Data using Quadtree and Region Growing Method)

  • 배대섭;김진남;조기성
    • 대한공간정보학회지
    • /
    • 제19권3호
    • /
    • pp.41-47
    • /
    • 2011
  • 원시 LiDAR 데이터는 벡터 구조이기 때문에 직접 활용 시 처리과정이 복잡해지지만, LiDAR 데이터를 필터링을 통해 정규 가상 격자 형태로 변환하면 데이터 용량이 감소되고 처리 속도가 빠르기 때문에 저가의 장비에서도 처리가 가능하다. 특히 Quadtree와 같은 영상 압축 처리 기법을 적용할 경우, 평활화를 통하여 비지면 요소인 자동차, 수목등이 제거되어 모델링에 유리하다는 장점이 있다. 따라서 본 연구에서는 대용량의 LiDAR 데이터로부터 Quadtree와 영역확장법을 활용하여 지면점을 자동 추출할 수 있는 알고리즘을 제시하였으며, 오차분류기법을 활용하여 정확도를 분석하였다. 그 결과, 지면점 분류 정확도는 98%이상으로 나타나, 지면점 추출에 유리함을 알 수 있었다. 또한 Quadtree와 영역확장법을 활용시 자동차, 수목등의 비지면 요소들을 효과적으로 제거할 수 있었다.

영역 확장법을 이용한 연기검출 (Smoke Detection using Region Growing Method)

  • 김동근
    • 정보처리학회논문지B
    • /
    • 제16B권4호
    • /
    • pp.271-280
    • /
    • 2009
  • 본 논문에서는 옥외 비디오 영상에서 영역 확장법을 이용한 연기 영역검출 방법을 제시한다. 제안된 방법은 차영상에 의한 초기 변화영역 검출 단계, 경계선 검출 및 확장 단계, 특징 검출 및 연기분류의 3단계로 구성된다. 초기 변화영역 검출 단계에서는 배경영상으로 차영상을 계산하고, 초기 임계치를 이용하여 이진영상을 구하고, 잡음 제거를 위하여 모폴로지 연산을 수행한다. 경계선 검출 및 확장 단계는 레이블링 알고리즘에 의해 이진영상에서 변화영역을 검출하고, 각 변화영역의 경계선을 검출한 다음, 차영상과 경계선을 이용하여 확장된 경계선을 계산한다. 특징 검출 및 연기분류 단계에서는 확장된 경계선에 모멘트를 이용하여 타원을 추정하고 타원의 시간에 따른 특징정보를 이용하여 연기 영역을 분류한다.