• Title/Summary/Keyword: information portal

Search Result 950, Processing Time 0.032 seconds

A Study on the Social Perception of Jiu-Jitsu Using Big data Analysis (빅데이터 분석을 활용한 주짓수의 사회적 인식 연구)

  • Kun-hee Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.209-217
    • /
    • 2024
  • The purpose of this study is to explore development plans by analyzing social interests and perceptions of jiu-jitsu using big data analysis. Network analysis, centrality analysis, and CONCOR analysis were conducted by collecting data for the last 10 years of major domestic portal sites. First, 'judo' was found to be the most important related word in network analysis, and 'judo' was also an important word in the analysis of dgree centrality. In the closeness centrality analysis, "defender" was the most important word, and "sports" was the most important word in betweenness centrality. Finally, as a result of CONCOR analysis, four clusters (related sports and marketing, jiu-jitsu competitions, belt test, supplies and expenses) were formed. As a conclusion of the study, first, words such as 'judo', 'exercise', 'competition', 'dobok', 'gym', and 'graduation' should be actively used to promote jiu-jitsu.As a conclusion of the study, first, words such as 'judo', 'exercise', 'contest', 'dobok', 'gym', and 'graduation' should be actively used to promote jiu-jitsu. Second, it is necessary to share information on training costs through various routes, to make awareness of the graduation process or method common, and to develop safety products and create a safe training culture. Third, it is necessary to find ways to continuously increase the influx of new trainees by attracting steady competitions.

A Study on the Evaluation Indicators for the Establishment of Marine Fisheries Safety Education Facilities (해양수산안전 교육시설 설립을 위한 입지평가요인 도출에 관한 연구)

  • Shin-Young Ha;Bo-Young Kim;Sung-Ho Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.340-347
    • /
    • 2024
  • In this study, an expert survey was conducted using the Delphi technique to select items and indicators for evaluation before installing educational facilities in the marine fisheries safety field, in which the educational infrastructure gap between regions is wide. Seven indicators were selected as geographic, social, and administrative factors. In order to objectively evaluate each indicator, evaluation indicators that could be evaluated using public data such as the "Comprehensive National Balanced Development Information System" and "National Statistical Portal" were developed. The Analytic Hierarchy Process (AHP) method was applied to select the weight for each indicator, resulting in 10 most important influencing factors on the selection of the location of educational facilities of the Marine Fisheries Safety Education Facilities: the distribution of marine officers, access to high-speed railways, the number of small ships less than 5 tons, access to highways interchange, the distribution of fishing boats, the close relationship of related industries, the planned new port, the distribution of commercial ports, the number of marine leisure riders, and the availability of long-term land leases in local government councils. The location evaluation index of marine and fishery safety education facilities developed in this study can be used to evaluate each region using national public data, and has the advantage of enabling objective evaluation. Therefore, it is judged that this evaluation index can be used to verify the feasibility of installing marine fisheries safety education facilities as well as other marine-related facilities.

The Implication and Recognition of International Garden Exposition Suncheon Bay Korea 2013 on Blogs (블로그(Blog)를 통해 본 2013순천만국제정원박람회에 대한 인식)

  • Jang, Min-Ji;Choi, Jung-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.4
    • /
    • pp.60-75
    • /
    • 2014
  • The purpose of this study was to look for useful implications in its next application or similar planning by assessing visitors' recognition of International Garden Exposition Suncheon Bay Korea 2013. To do this, blogs acknowledged as powerful communication media in modern information society were used. After searching for blogs related to International Garden Exposition Suncheon Bay Korea in the portal site ranked first in the domestic market share, this study classified 300 cases. This study was able to grasp the consciousness as bloggers gave descriptions of information and impressions and experiences of spaces without making any adjustments. The survey results are as follows: First, Dutch gardens were the most preferred, followed by Korean gardens, Chinese gardens and French gardens; in general, visitors were not satisfied with the national gardens. Inquiry is needed into the method of determining diverse cultural identity rather than a sample garden type through blogs delivering regret regarding the world gardens. Second, the survey results showed that the level of awareness of designers' gardens was low. This study judges that more emphasis should be placed on their roles as places speaking for the original purpose of the garden exposition which introduces gardening art and design through experimental design. Third, it was understood that many bloggers were deeply impressed by ephemeral landscapes like the change in landscape consequent on the elapse of time, distinctive atmosphere, and detailed-landscapes. These aspects are important landscape elements, and those elements should be addressed with weight in a subsequent study. Fourth, the most impressive places are 'Suncheon Lake Garden' and 'Bridge of Dreams', which are establishing themselves as icons of International Garden Exposition Suncheon Bay Korea 2013. However, relatively, public attitude towards the world gardens and designers' gardens are weak. Fifth, bloggers were providing a variety of information like transportation, events schedules, ticket purchasing & prices, discount information, etc. Ticket price was commented on the most, and most of the bloggers thought ticket prices were 'expensive'. This study understands such a phenomenon as a result of the general population's non-establishment of the perception that it's proper to view gardens at visitors' own expense. Generally, bloggers expressed satisfaction with International Garden Exposition Suncheon Bay Korea 2013, but with criticism as well. Their criticism included disappointing matters, to be improved upon and wishes without any distortion, providing meaningful implications deserving reference for similar cases. In this context, a blogger could be called a citizen-reviewer while a blog could be referred to as 'a field of informal discourse' for the public. As a research method of this study, blogs are difficult to interpret as they are subjective and personal, and have limited data analysis through their quantifications; however, blogs as methods of recognition survey are channels for varied, concrete and detailed awareness which are hard to grasp through a questionnaire survey or interviews. This study judges that such an aspect of a blog could be a useful means of grasping and reflecting upon visitors' attitude in future studies.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

A Study on the Analysis of Difference between IT and Non-IT Companies on the Consumer Dispute Resolution System's Continuous Use Intention -Focusing on Korean Small and Medium Enterprises (소비자 분쟁처리시스템 지속사용의도에 대하여 IT기업과 비IT기업 간의 차이분석에 관한 연구 -한국 중소기업을 중심으로)

  • Jung, Soo-Yong;Shin, Yong-tae;Han, Jeong-Hoon;Lee, Sung-Hoon
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.203-212
    • /
    • 2017
  • This research analyzed the factors that have the influences on the intentions to use the consumer dispute settlement system for the small- and medium-sized corporations. The consumer dispute settlement system is a general Internet information portal service which enables the small- and medium-sized corporations and the small businesses receive the support for the accurate damage handling method and the legal service through the Internet in their disputes with the black consumers or the consumers. With the small- and medium-sized corporation users who use the consumer dispute settlement system as the subjects, the research took a lot at what influences the consumer dispute settlement system has on the quality of the information, the quality of the system, the ease-of-use regarding which the environmental factors are perceived, and the ease that was perceived and, finally, what influences it has on the intention of the use. The accuracy, the convenience, and the costs of the consumer dispute settlement system had the positive influences on the ease-of-use that was perceived and the accuracy and the convenience, also had the positive influences on the usefulness that was perceived. Also, it was verified that the ease-of-use of the consumer dispute settlement system that was perceived and the usefulness of use of the consumer dispute settlement system that was perceived finally had the positive influence relationships with the intention of the use. It is highly expected that if, based on the results of this research, the quality of the consumer dispute settlement system is maintained and supplemented to fit the priority order, there will be the maintenance of, and the development toward, a system that is even more improved than the previously existent system.

The effect of Big-data investment on the Market value of Firm (기업의 빅데이터 투자가 기업가치에 미치는 영향 연구)

  • Kwon, Young jin;Jung, Woo-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.99-122
    • /
    • 2019
  • According to the recent IDC (International Data Corporation) report, as from 2025, the total volume of data is estimated to reach ten times higher than that of 2016, corresponding to 163 zettabytes. then the main body of generating information is moving more toward corporations than consumers. So-called "the wave of Big-data" is arriving, and the following aftermath affects entire industries and firms, respectively and collectively. Therefore, effective management of vast amounts of data is more important than ever in terms of the firm. However, there have been no previous studies that measure the effects of big data investment, even though there are number of previous studies that quantitatively the effects of IT investment. Therefore, we quantitatively analyze the Big-data investment effects, which assists firm's investment decision making. This study applied the Event Study Methodology, which is based on the efficient market hypothesis as the theoretical basis, to measure the effect of the big data investment of firms on the response of market investors. In addition, five sub-variables were set to analyze this effect in more depth: the contents are firm size classification, industry classification (finance and ICT), investment completion classification, and vendor existence classification. To measure the impact of Big data investment announcements, Data from 91 announcements from 2010 to 2017 were used as data, and the effect of investment was more empirically observed by observing changes in corporate value immediately after the disclosure. This study collected data on Big Data Investment related to Naver 's' News' category, the largest portal site in Korea. In addition, when selecting the target companies, we extracted the disclosures of listed companies in the KOSPI and KOSDAQ market. During the collection process, the search keywords were searched through the keywords 'Big data construction', 'Big data introduction', 'Big data investment', 'Big data order', and 'Big data development'. The results of the empirically proved analysis are as follows. First, we found that the market value of 91 publicly listed firms, who announced Big-data investment, increased by 0.92%. In particular, we can see that the market value of finance firms, non-ICT firms, small-cap firms are significantly increased. This result can be interpreted as the market investors perceive positively the big data investment of the enterprise, allowing market investors to better understand the company's big data investment. Second, statistical demonstration that the market value of financial firms and non - ICT firms increases after Big data investment announcement is proved statistically. Third, this study measured the effect of big data investment by dividing by company size and classified it into the top 30% and the bottom 30% of company size standard (market capitalization) without measuring the median value. To maximize the difference. The analysis showed that the investment effect of small sample companies was greater, and the difference between the two groups was also clear. Fourth, one of the most significant features of this study is that the Big Data Investment announcements are classified and structured according to vendor status. We have shown that the investment effect of a group with vendor involvement (with or without a vendor) is very large, indicating that market investors are very positive about the involvement of big data specialist vendors. Lastly but not least, it is also interesting that market investors are evaluating investment more positively at the time of the Big data Investment announcement, which is scheduled to be built rather than completed. Applying this to the industry, it would be effective for a company to make a disclosure when it decided to invest in big data in terms of increasing the market value. Our study has an academic implication, as prior research looked for the impact of Big-data investment has been nonexistent. This study also has a practical implication in that it can be a practical reference material for business decision makers considering big data investment.

Text Mining-Based Emerging Trend Analysis for e-Learning Contents Targeting for CEO (텍스트마이닝을 통한 최고경영자 대상 이러닝 콘텐츠 트렌드 분석)

  • Kyung-Hoon Kim;Myungsin Chae;Byungtae Lee
    • Information Systems Review
    • /
    • v.19 no.2
    • /
    • pp.1-19
    • /
    • 2017
  • Original scripts of e-learning lectures for the CEOs of corporation S were analyzed using topic analysis, which is a text mining method. Twenty-two topics were extracted based on the keywords chosen from five-year records that ranged from 2011 to 2015. Research analysis was then conducted on various issues. Promising topics were selected through evaluation and element analysis of the members of each topic. In management and economics, members demonstrated high satisfaction and interest toward topics in marketing strategy, human resource management, and communication. Philosophy, history of war, and history demonstrated high interest and satisfaction in the field of humanities, whereas mind health showed high interest and satisfaction in the field of in lifestyle. Studies were also conducted to identify topics on the proportion of content, but these studies failed to increase member satisfaction. In the field of IT, educational content responds sensitively to change of the times, but it may not increase the interest and satisfaction of members. The present study found that content production for CEOs should draw out deep implications for value innovation through technology application instead of simply ending the technical aspect of information delivery. Previous studies classified contents superficially based on the name of content program when analyzing the status of content operation. However, text mining can derive deep content and subject classification based on the contents of unstructured data script. This approach can examine current shortages and necessary fields if the service contents of the themes are displayed by year. This study was based on data obtained from influential e-learning companies in Korea. Obtaining practical results was difficult because data were not acquired from portal sites or social networking service. The content of e-learning trends of CEOs were analyzed. Data analysis was also conducted on the intellectual interests of CEOs in each field.

An Analysis for Deriving New Convergent Service of Mobile Learning: The Case of Social Network Analysis and Association Rule (모바일 러닝에서의 신규 융합서비스 도출을 위한 분석: 사회연결망 분석과 연관성 분석 사례)

  • Baek, Heon;Kim, Jin Hwa;Kim, Yong Jin
    • Information Systems Review
    • /
    • v.15 no.3
    • /
    • pp.1-37
    • /
    • 2013
  • This study is conducted to explore the possibility of service convergence to promote mobile learning. This study has attempted to identify how mobile learning service is provided, which services among them are considered most popular, and which services are highly demanded by users. This study has also investigated the potential opportunities for service convergence of mobile service and e-learning. This research is then extended to examine the possibility of active convergence of common services in mobile services and e-learning. Important variables have been identified from related web pages of portal sites using social network analysis (SNA) and association rules. Due to the differences in number and type of variables on different web pages, SNA was used to deal with the difficulties of identifying the degree of complex connection. Association analysis has been used to identify association rules among variables. The study has revealed that most frequent services among common services of mobile services and e-learning were Games and SNS followed by Payment, Advertising, Mail, Event, Animation, Cloud, e-Book, Augmented Reality and Jobs. This study has also found that Search, News, GPS in mobile services were turned out to be very highly demanded while Simulation, Culture, Public Education were highly demanded in e-learning. In addition, It has been found that variables involving with high service convergence based on common variables of mobile and e-learning services were Games and SNS, Games and Sports, SNS and Advertising, Games and Event, SNS and e-Book, Games and Community in mobile services while Games, Animation, Counseling, e-Book, being preceding services Simulation, Speaking, Public Education, Attendance Management were turned out be highly convergent in e-learning services. Finally, this study has attempted to predict possibility of active service convergence focusing on Games, SNS, e-Book which were highly demanded common services in mobile and e-learning services. It is expected that this study can be used to suggest a strategic direction to promote mobile learning by converging mobile services and e-learning.

  • PDF

Analyzing the Issue Life Cycle by Mapping Inter-Period Issues (기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.25-41
    • /
    • 2014
  • Recently, the number of social media users has increased rapidly because of the prevalence of smart devices. As a result, the amount of real-time data has been increasing exponentially, which, in turn, is generating more interest in using such data to create added value. For instance, several attempts are being made to analyze the relevant search keywords that are frequently used on new portal sites and the words that are regularly mentioned on various social media in order to identify social issues. The technique of "topic analysis" is employed in order to identify topics and themes from a large amount of text documents. As one of the most prevalent applications of topic analysis, the technique of issue tracking investigates changes in the social issues that are identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has two limitations. First, when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. This creates practical limitations in the form of significant time and cost burdens. Therefore, this traditional approach is difficult to apply in most applications that need to perform an analysis on the additional period. Second, the issue is not only generated and terminated constantly, but also one issue can sometimes be distributed into several issues or multiple issues can be integrated into one single issue. In other words, each issue is characterized by a life cycle that consists of the stages of creation, transition (merging and segmentation), and termination. The existing issue tracking methods do not address the connection and effect relationship between these issues. The purpose of this study is to overcome the two limitations of the existing issue tracking method, one being the limitation regarding the analysis method and the other being the limitation involving the lack of consideration of the changeability of the issues. Let us assume that we perform multiple topic analysis for each multiple period. Then it is essential to map issues of different periods in order to trace trend of issues. However, it is not easy to discover connection between issues of different periods because the issues derived for each period mutually contain heterogeneity. In this study, to overcome these limitations without having to analyze the entire period's documents simultaneously, the analysis can be performed independently for each period. In addition, we performed issue mapping to link the identified issues of each period. An integrated approach on each details period was presented, and the issue flow of the entire integrated period was depicted in this study. Thus, as the entire process of the issue life cycle, including the stages of creation, transition (merging and segmentation), and extinction, is identified and examined systematically, the changeability of the issues was analyzed in this study. The proposed methodology is highly efficient in terms of time and cost, as it sufficiently considered the changeability of the issues. Further, the results of this study can be used to adapt the methodology to a practical situation. By applying the proposed methodology to actual Internet news, the potential practical applications of the proposed methodology are analyzed. Consequently, the proposed methodology was able to extend the period of the analysis and it could follow the course of progress of each issue's life cycle. Further, this methodology can facilitate a clearer understanding of complex social phenomena using topic analysis.