A User Profile-based Filtering Method for Information Search in Smart TV Environment (스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법)
-
- Journal of Intelligence and Information Systems
- /
- v.18 no.3
- /
- pp.97-117
- /
- 2012
Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.
This study examines the operational effectiveness of a Convection Current Aeration System (CCAS) in reservoir. CCAS was run from June, 2008 when the thermocline begun forming in the reservoir. This paper reviews the influence of stratification, dissolved oxygen dynamics and temperature in the lake's natural state from June to October 2008. The survey was done on a week basis. Upwelling flow effects a radius of
Big data refers to the data that cannot be processes with conventional contemporary data technologies. As smart devices and social network services produces vast amount of data, big data attracts much attention from researchers. There are strong demands form governments and industries for bib data as it can create new values by drawing business insights from data. Since various new technologies to process big data introduced, academic communities also show much interest to the big data domain. A notable advance related to the big data technology has been in various fields. Big data technology makes it possible to access, collect, and save individual's personal data. These technologies enable the analysis of huge amounts of data with lower cost and less time, which is impossible to achieve with traditional methods. It even detects personal information that people do not want to open. Therefore, people using information technology such as the Internet or online services have some level of privacy concerns, and such feelings can hinder continued use of information systems. For example, SNS offers various benefits, but users are sometimes highly exposed to privacy intrusions because they write too much personal information on it. Even though users post their personal information on the Internet by themselves, the data sometimes is not under control of the users. Once the private data is posed on the Internet, it can be transferred to anywhere by a few clicks, and can be abused to create fake identity. In this way, privacy intrusion happens. This study aims to investigate how perceived personal information overload in SNS affects user's risk perception and information privacy concerns. Also, it examines the relationship between the concerns and user resistance behavior. A survey approach and structural equation modeling method are employed for data collection and analysis. This study contributes meaningful insights for academic researchers and policy makers who are planning to develop guidelines for privacy protection. The study shows that information overload on the social network services can bring the significant increase of users' perceived level of privacy risks. In turn, the perceived privacy risks leads to the increased level of privacy concerns. IF privacy concerns increase, it can affect users to from a negative or resistant attitude toward system use. The resistance attitude may lead users to discontinue the use of social network services. Furthermore, information overload is mediated by perceived risks to affect privacy concerns rather than has direct influence on perceived risk. It implies that resistance to the system use can be diminished by reducing perceived risks of users. Given that users' resistant behavior become salient when they have high privacy concerns, the measures to alleviate users' privacy concerns should be conceived. This study makes academic contribution of integrating traditional information overload theory and user resistance theory to investigate perceived privacy concerns in current IS contexts. There is little big data research which examined the technology with empirical and behavioral approach, as the research topic has just emerged. It also makes practical contributions. Information overload connects to the increased level of perceived privacy risks, and discontinued use of the information system. To keep users from departing the system, organizations should develop a system in which private data is controlled and managed with ease. This study suggests that actions to lower the level of perceived risks and privacy concerns should be taken for information systems continuance.
The family environment children are exposed to growing up greatly influences their future potential and achievements. Previous findings show that changes in family structure during childhood, particularly those resulting from divorce or death, cause lasting negative consequence that affect the child physically, psychologically, economically, and socially. Unfortunately, single-parent households are becoming increasingly common in Korea, nearly doubling to more than a million cases in the last two decades. Existing domestic and international studies of this area tend to focus on the short-term effects of growing up in a single-parent household. In addition, these studies group their samples in ways that result in findings that may be too broad or are not necessarily an accurate representation of the subjects. This study attempts to address some of these shortcomings by focusing on the long-term effects of how changes in family structure early in children's lives affect achievement during their transition to adulthood. In addition, it takes into account the development cycle the child is in at the time of family restructuring, and what kind of long-term effects result from that. In this analysis, we find that there are several cases of statistically significantly differences in domain achievement depending on the developmental stage the child was in when the parental divorce or death occurred. The findings indicate that changes in family structure during the infant/toddler period influence health condition and depression, while changes in family structure during middle-childhood and adolescence do not. Meanwhile, changes in family structure during any point in the developmental stages have negative effects on educational attainment, with the severity of these negative effects depending on when the family changes occur. The negative effect on educational attainment is most prominent when a change in family structure occurs during the infant/toddler period, followed by adolescence, then middle-childhood.
Purpose
We frequently use search engines to find relevant information in the Web but still end up with too much information. In order to solve this problem of information overload, ranking algorithms have been applied to various domains. As more information will be available in the future, effectively and efficiently ranking search results will become more critical. In this paper, we propose a ranking algorithm for the Semantic Web resources, specifically RDF resources. Traditionally, the importance of a particular Web page is estimated based on the number of key words found in the page, which is subject to manipulation. In contrast, link analysis methods such as Google's PageRank capitalize on the information which is inherent in the link structure of the Web graph. PageRank considers a certain page highly important if it is referred to by many other pages. The degree of the importance also increases if the importance of the referring pages is high. Kleinberg's algorithm is another link-structure based ranking algorithm for Web pages. Unlike PageRank, Kleinberg's algorithm utilizes two kinds of scores: the authority score and the hub score. If a page has a high authority score, it is an authority on a given topic and many pages refer to it. A page with a high hub score links to many authoritative pages. As mentioned above, the link-structure based ranking method has been playing an essential role in World Wide Web(WWW), and nowadays, many people recognize the effectiveness and efficiency of it. On the other hand, as Resource Description Framework(RDF) data model forms the foundation of the Semantic Web, any information in the Semantic Web can be expressed with RDF graph, making the ranking algorithm for RDF knowledge bases greatly important. The RDF graph consists of nodes and directional links similar to the Web graph. As a result, the link-structure based ranking method seems to be highly applicable to ranking the Semantic Web resources. However, the information space of the Semantic Web is more complex than that of WWW. For instance, WWW can be considered as one huge class, i.e., a collection of Web pages, which has only a recursive property, i.e., a 'refers to' property corresponding to the hyperlinks. However, the Semantic Web encompasses various kinds of classes and properties, and consequently, ranking methods used in WWW should be modified to reflect the complexity of the information space in the Semantic Web. Previous research addressed the ranking problem of query results retrieved from RDF knowledge bases. Mukherjea and Bamba modified Kleinberg's algorithm in order to apply their algorithm to rank the Semantic Web resources. They defined the objectivity score and the subjectivity score of a resource, which correspond to the authority score and the hub score of Kleinberg's, respectively. They concentrated on the diversity of properties and introduced property weights to control the influence of a resource on another resource depending on the characteristic of the property linking the two resources. A node with a high objectivity score becomes the object of many RDF triples, and a node with a high subjectivity score becomes the subject of many RDF triples. They developed several kinds of Semantic Web systems in order to validate their technique and showed some experimental results verifying the applicability of their method to the Semantic Web. Despite their efforts, however, there remained some limitations which they reported in their paper. First, their algorithm is useful only when a Semantic Web system represents most of the knowledge pertaining to a certain domain. In other words, the ratio of links to nodes should be high, or overall resources should be described in detail, to a certain degree for their algorithm to properly work. Second, a Tightly-Knit Community(TKC) effect, the phenomenon that pages which are less important but yet densely connected have higher scores than the ones that are more important but sparsely connected, remains as problematic. Third, a resource may have a high score, not because it is actually important, but simply because it is very common and as a consequence it has many links pointing to it. In this paper, we examine such ranking problems from a novel perspective and propose a new algorithm which can solve the problems under the previous studies. Our proposed method is based on a class-oriented approach. In contrast to the predicate-oriented approach entertained by the previous research, a user, under our approach, determines the weights of a property by comparing its relative significance to the other properties when evaluating the importance of resources in a specific class. This approach stems from the idea that most queries are supposed to find resources belonging to the same class in the Semantic Web, which consists of many heterogeneous classes in RDF Schema. This approach closely reflects the way that people, in the real world, evaluate something, and will turn out to be superior to the predicate-oriented approach for the Semantic Web. Our proposed algorithm can resolve the TKC(Tightly Knit Community) effect, and further can shed lights on other limitations posed by the previous research. In addition, we propose two ways to incorporate data-type properties which have not been employed even in the case when they have some significance on the resource importance. We designed an experiment to show the effectiveness of our proposed algorithm and the validity of ranking results, which was not tried ever in previous research. We also conducted a comprehensive mathematical analysis, which was overlooked in previous research. The mathematical analysis enabled us to simplify the calculation procedure. Finally, we summarize our experimental results and discuss further research issues.
The emergence of the field of organizational buying behavior in the mid-1960’s with the publication of Industrial Buying and Creative Marketing (1967) set the stage for a new paradigm of thinking about how business was conducted in markets other than those serving ultimate consumers. Whether it is "industrial marketing" or "business-to-business marketing" (B-to-B), organizational buying behavior remains the core differentiating characteristic of this domain of marketing. This paper explores the impact of several dynamic factors that have influenced how organizations relate to one another in a rapidly increasing interdependence, which in turn can impact organizational buying behavior. The paper also raises the question of whether or not the major conceptual models of organizational buying behavior in an interdependent world are still relevant to guide research and managerial thinking, in this dynamic business environment. The paper is structured to explore three questions related to organizational interdependencies: 1. What are the factors and trends driving the emergence of organizational interdependencies? 2. Will the major conceptual models of organizational buying behavior that have developed over the past half century be applicable in a world of interdependent organizations? 3. What are the implications of organizational interdependencies on the research and practice of organizational buying behavior? Consideration of the factors and trends driving organizational interdependencies revealed five critical drivers in the relationships among organizations that can impact their purchasing behavior: Accelerating Globalization, Flattening Networks of Organizations, Disrupting Value Chains, Intensifying Government Involvement, and Continuously Fragmenting Customer Needs. These five interlinked drivers of interdependency and their underlying technological advances can alter the relationships within and among organizations that buy products and services to remain competitive in their markets. Viewed in the context of a customer driven marketing strategy, these forces affect three levels of strategy development: (1) evolving customer needs, (2) the resulting product/service/solution offerings to meet these needs, and (3) the organization competencies and processes required to develop and implement the offerings to meet needs. The five drivers of interdependency among organizations do not necessarily operate independently in their impact on how organizations buy. They can interact with each other and become even more potent in their impact on organizational buying behavior. For example, accelerating globalization may influence the emergence of additional networks that further disrupt traditional value chain relationships, thereby changing how organizations purchase products and services. Increased government involvement in business operations in one country may increase costs of doing business and therefore drive firms to seek low cost sources in emerging markets in other countries. This can reduce employment opportunitiesn one country and increase them in another, further accelerating the pace of globalization. The second major question in the paper is what impact these drivers of interdependencies have had on the core conceptual models of organizational buying behavior. Consider the three enduring conceptual models developed in the Industrial Buying and Creative Marketing and Organizational Buying Behavior books: the organizational buying process, the buying center, and the buying situation. A review of these core models of organizational buying behavior, as originally conceptualized, shows they are still valid and not likely to change with the increasingly intense drivers of interdependency among organizations. What will change however is the way in which buyers and sellers interact under conditions of interdependency. For example, increased interdependencies can lead to increased opportunities for collaboration as well as conflict between buying and selling organizations, thereby changing aspects of the buying process. In addition, the importance of communication processes between and among organizations will increase as the role of trust becomes an important criterion for a successful buying relationship. The third question in the paper explored consequences and implications of these interdependencies on organizational buying behavior for practice and research. The following are considered in the paper: the need to increase understanding of network influences on organizational buying behavior, the need to increase understanding of the role of trust and value among organizational participants, the need to improve understanding of how to manage organizational buying in networked environments, the need to increase understanding of customer needs in the value network, and the need to increase understanding of the impact of emerging new business models on organizational buying behavior. In many ways, these needs deriving from increased organizational interdependencies are an extension of the conceptual tradition in organizational buying behavior. In 1977, Nicosia and Wind suggested a focus on inter-organizational over intra-organizational perspectives, a trend that has received considerable momentum since the 1990's. Likewise for managers to survive in an increasingly interdependent world, they will need to better understand the complexities of how organizations relate to one another. The transition from an inter-organizational to an interdependent perspective has begun, and must continue so as to develop an improved understanding of these important relationships. A shift to such an interdependent network perspective may require many academicians and practitioners to fundamentally challenge and change the mental models underlying their business and organizational buying behavior models. The focus can no longer be only on the dyadic relations of the buying organization and the selling organization but should involve all the related members of the network, including the network of customers, developers, and other suppliers and intermediaries. Consider for example the numerous partner networks initiated by SAP which involves over 9000 companies and over a million participants. This evolving, complex, and uncertain reality of interdependencies and dynamic networks requires reconsideration of how purchase decisions are made; as a result they should be the focus of the next phase of research and theory building among academics and the focus of practical models and experiments undertaken by practitioners. The hope is that such research will take place, not in the isolation of the ivory tower, nor in the confines of the business world, but rather, by increased collaboration of academics and practitioners. In conclusion, the consideration of increased interdependence among organizations revealed the continued relevance of the fundamental models of organizational buying behavior. However to increase the value of these models in an interdependent world, academics and practitioners should improve their understanding of (1) network influences, (2) how to better manage these influences, (3) the role of trust and value among organizational participants, (4) the evolution of customer needs in the value network, and (5) the impact of emerging new business models on organizational buying behavior. To accomplish this, greater collaboration between industry and academia is needed to advance our understanding of organizational buying behavior in an interdependent world.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70