• 제목/요약/키워드: inflow temperature

검색결과 349건 처리시간 0.03초

용담호 수온성층해석을 위한 유입수온 회귀분석 모형 개발 (Development of the Inflow Temperature Regression Model for the Thermal Stratification Analysis in Yongdam Reservoir)

  • 안기홍;김선주;서동일
    • 환경영향평가
    • /
    • 제20권4호
    • /
    • pp.435-442
    • /
    • 2011
  • In this study, a regression model was developed for prediction of inflow temperature to support an effective thermal stratification simulation of Yongdam Reservoir, using the relationship between gaged inflow temperature and air temperature. The effect of reproductability for thermal stratification was evaluated using EFDC model by gaged vertical profile data of water temperature(from June to December in 2005) and ex-developed regression models. Therefore, in the development process, the coefficient of correlation and determination are 0.96 and 0.922, respectively. Moreover, the developed model showed good performance in reproducing the reservoir thermal stratification. Results of this research can be a role to provide a base for building of prediction model for water quality management in near future.

정밀 오일냉각기의 오일온도 제어오차에 관한 연구 (A Study on the Oil Temperature Control Errors of Precision Oil Coolers)

  • 이상호;이찬홍;김갑순
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.451-454
    • /
    • 2003
  • The Oil Coolers is very important unit for the stable thermal performance in machine tools, semiconductor equipments and high precision measuring systems. To select a proper oil cooler for the temperature control of core unit in a machine, not only cooling ability but also static and dynamic sensitivity of temperature sensors are considered. In this paper, the relationship between cooling ability and inflow oil temperature is identified. The cooling ability is increased with the increase of inflow oil temperature. The oil temperature control errors of a cooler are influenced by mainly sensitivity of temperature sensors and heating velocity in a machine. The validity of error cause analysis for temperature control is proved by real cooling experiments with inflow and outflow temperature sensors.

  • PDF

정지궤도 인공위성 추진시스템의 온도변화를 통한 배관내 가압제 유입 예측기법 연구 (The Study of Pressurant Inflow Prediction Using Temperature Change of Geostationary Satellite Propellant System)

  • 박응식;전형렬;박봉규;한조영;최성봉;김용민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.96-99
    • /
    • 2005
  • The geostationary satellite propulsion system has thermistors which can measure liquid propellant temperature at tanks, pipes and etc. In the satellite propulsion system with several tanks, the propellant in the tanks is moved by temperature change and this temperature pattern is constant. In this paper, the temperature change pattern of KOREASAT 1 propulsion system is compared and the prediction study of pressurant inflow using temperature change of geostationary satellite propulsion system is described.

  • PDF

개구부의 유동이 대류에 미치는 영향에 관한 수치연구 (A Numerical Study on Effects of Flow Through Openings on Convection)

  • 박외철;이경아
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.52-56
    • /
    • 2000
  • The finite control volume method was utilized to investigate the effects of flow through openings on convection in an enclosure. Flow patterns and temperature distribution were compared for non-dimensional inflow velocity U=20, 40, 60 at Ra=$10^4$ and $5\times10^4$, respectively. The inflow velocity influenced temperature distribution in the enclosure significantly and lowered temperature on the top wall. The flow through openings forced the position of the highest temperature on the top wall to move toward the outflow opening.

  • PDF

원격상관 기후지수를 활용한 1개월 선행 댐유입량 예측 (One-month lead dam inflow forecast using climate indices based on tele-connection)

  • 조재필;정일원;김철겸;김태국
    • 한국수자원학회논문집
    • /
    • 제49권5호
    • /
    • pp.361-372
    • /
    • 2016
  • 신뢰성 있는 댐유입량의 장기예측은 효율적인 댐운영에 필수적이다. 2000년대 이후 엘리뇨-남방진동(ENSO) 등의 전구기후지수와 지역수문기후와의 원격상관성이 규명되면서, 이를 활용한 미래의 수문조건을 예측하기 위한 연구가 활발히 시도되고 있다. 본 연구에서는 안동댐유역을 대상으로 미국 NOAA에서 제공하는 40개 전구기후지수의 원격상관을 분석하고, 이를 기반으로 1개월 선행 댐유입량의 예측성능 및 활용성을 평가하였다. 본 연구에서는 1) 원격상관을 통해 강수와 기온을 예측하고 SWAT 모델을 이용하여 예측 댐유입량을 산정하는 방법(SWAT-Forecasted), 직접 댐유입량을 예측하는 기법(CIR-Forecasted), 예측시점의 관측값이 과거자료에서 해당하는 순위(rank)에 근거한 방법(Rank-Observed)을 비교하였다. 결과적으로 통계적 방법으로 댐유입량을 직접 예측하는 접근 방식(CIR-Forecasted)이 12월을 제외하고는 다른 방법에 비해 우수한 예측성을 보였다. 이것은 강수량 및 기온 예측정보를 일단위로 상세화하는 가정과 유출모델링과정에서 발생하는 불확실성이 예측결과에 포함되지 않기 때문인 것으로 판단된다. 본 연구결과는 원격상관기반의 1개월 선행 댐유입량 예측이 안동댐 운영에 유용한 정보를 제공할 수 있는 것을 시사하였다.

영천호에서 남조류 발생과 환경요인의 관련성 연구 (A Study on the Relationship between Cyanobacteria and Environmental Factors in Yeongcheon Lake)

  • 이현미;신라영;이정호;박종근
    • 한국물환경학회지
    • /
    • 제35권4호
    • /
    • pp.352-361
    • /
    • 2019
  • The purpose of this study is to analyze the characteristics and correlations of the Yeongcheon Lake in order to reduce the occurrence of harmful cyanobacteria. In this study, we investigated the water quality and phytoplankton of the lake from May to November in 2017. Correlation and data mining analyses were performed to analyze the relationship between the two factors. The water temperature was lowest at the point where the Yeongcheon Lake inflow occurs at Imha Lake. It was highest at the point where the outflow occurs to Angye Lake. The pH was also highest at the outflow point, but in the case of DO, it was highest at the midpoint between the inflow and outflow. The main cyanobacteria that emerged during the study period were Oscillatorialimosa, Microcysti saeruginosa and Aphanizomenon flos-aquae. As a result of correlation analysis, the water temperature, inflow, COD loading, TOC loading at the inflow point of the Yeongcheon Lake were the items that were related to the harmful cyanobacteria. The data mining analysis indicated that the TP loading and harmful cyanobacteria in the inflow point of the Yeongcheon Lake were influential on the detrimental cyanobacteria in the Yeongcheon Lake outflow point. When the TP loading was less than 39.0 kg/day at the inflow site, it was expected that the amount of harmful cyanobacteria could be maintained below 10,000 cells/mL.

태양열을 이용한 시설재배 지중변온가온의 토양 온도특성 연구(2) - 지중변온가온의 단위면적당 소요에너지 - (Study on Temperature Variation by Greenhouse Soil Warming System Using Solar Thermal Energy (2) - Required Energy per Unit Area for Soil Warming -)

  • 김진현;김태욱;나규동;김태수;김은태;정석현
    • Journal of Biosystems Engineering
    • /
    • 제35권1호
    • /
    • pp.46-52
    • /
    • 2010
  • The temperature of root zone was known as an important factor for the growth of crops and reduction of energy in greenhouse. The purpose of this study was to design the apposite inflow of calories per the unit area by comparison of temperature in the warmed and non-warmed soil. The energy needed for soil warming about pipe length showed the change of temperature on inflow and outflow as $2^{\circ}C{\sim}3^{\circ}C$(average $2.5^{\circ}C$). Therefore, the inflow per the unit hour was 3,450, 57,5 kcal/$h{\cdot}m^2$ on soil heating respectively. The non-warmed soil temperature in greenhouse made a difference by depth and it was partially affected inner temperature under 15 cm, but it was not above 15 cm. The soil temperature would be raised over $5^{\circ}C$ than non-warmed soil to increase effect of soil warming. Therefore, the inflow per the unit area that should be provided was about 100 kcal/$h{\cdot}m^2$.

냉수가 수평유입되는 열저장탱크의 중간 경계면 부근에서의 열성층 효과 (Thermal Stratification Effects Near an Interface by Horizontal Inflow of Cold Water in Thermal Storage Tank)

  • 황성일;박이동
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.46-56
    • /
    • 1988
  • This investigation concerns thermal stratification of the water due to the temperature difference (${\Delta}T=T_{\infty}-T_i$) between the mean temperature of the water in the test tank (1m wide, 1m high, 2.1m long) and the temperature of the inflow water into the tank; flow rate of circulating water and height of the sink diffuser in the test tank. The additional objectives was to observe a stratification phenomena near an interface by measuring the velosities and the temperature difference and investigate an availabilities of the better effective hot water through establishing thermocline near an interface around the bottom of the tank. Following results were obtained through the experiments. 1. When the flow rate was constant and the temperature difference (${\Delta}T=T_{\infty}-T_i$) between the mean temperature of the flow in the test tank and the temperature of the inflow water increased by 5.6, 9.5, 13.5($^{\circ}C$), obtained the better effective advantage of hot water and the stress near an interface increased gradually. 2. When the ${\Delta}T=T_{\infty}-T_i$ was constant and flow rate increased by 4.0, 4.8, 6.4, 8.0 (LPM), obtained the better effective advent age of hot water and the mean stress near an interface increased gradually. 3. When the height of the sink diffuser was 25cm from tank bottom in comparison with 50cm, obtained the better effective advantage of hot water and the mean stress near an interface increased.

  • PDF

다변량분석에 의한 여수 백야도 어류양식장의 해양 환경분석 (Environmental Evaluation of Fish Aquafarm off Baegyado in Yeosu by Multivariate Analysis)

  • 이창혁;강만구;임수연;김재현;신종암
    • 수산해양교육연구
    • /
    • 제29권3호
    • /
    • pp.785-798
    • /
    • 2017
  • This study was conducted to evaluated the surface(10 variables) and bottom(10 variables) water quality, and sediment(3 variables) in the cage fish farm off Baegyado in Gamak Bay using a multivariate analysis from January 2013 to November 2014. Generally, the environmental data did not show a certain tendency by months during two years investigated. The pairwise simple correlation matrices among variables were also shown. The first four principal components of the surface water in 2013 explain 93% of the total sample variance; the first principal component($z_1$) showed the freshwater inflow and/or precipitation, $z_2$, $z_3$ and $z_4$ related to freshwater inflow and/or precipitation, organic matters and eutrophy, respectively; the first four principal components of the bottom water in 2013 explain 93% of the total sample variance; the $z_1$, $z_2$ and $z_4$ related to freshwater inflow and/or precipitation, and $z_3$ water temperature. In 2014, at the surface water the first three principal components explain 87%; the $z_1$, $z_2$ and $z_3$ related to water temperature, eutrophy and freshwater inflow and/or precipitation, respectively; at the bottom water the first three principal components explain 93%; $z_1$, $z_2$ and $z_3$ related to water temperature, freshwater inflow and/or precipitation and eutrophy. Half of the principal components related to freshwater inflow and/or precipitation.

다중선형회귀분석에 의한 계절별 저수지 유입량 예측 (Forecasting of Seasonal Inflow to Reservoir Using Multiple Linear Regression)

  • 강재원
    • 한국환경과학회지
    • /
    • 제22권8호
    • /
    • pp.953-963
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. Forecasting of seasonal inflow to Andong dam is performed and assessed using statistical methods based on hydrometeorological data. Predictors which is used to forecast seasonal inflow to Andong dam are selected from southern oscillation index, sea surface temperature, and 500 hPa geopotential height data in northern hemisphere. Predictors are selected by the following procedure. Primary predictors sets are obtained, and then final predictors are determined from the sets. The primary predictor sets for each season are identified using cross correlation and mutual information. The final predictors are identified using partial cross correlation and partial mutual information. In each season, there are three selected predictors. The values are determined using bootstrapping technique considering a specific significance level for predictor selection. Seasonal inflow forecasting is performed by multiple linear regression analysis using the selected predictors for each season, and the results of forecast using cross validation are assessed. Multiple linear regression analysis is performed using SAS. The results of multiple linear regression analysis are assessed by mean squared error and mean absolute error. And contingency table is established and assessed by Heidke skill score. The assessment reveals that the forecasts by multiple linear regression analysis are better than the reference forecasts.