• Title/Summary/Keyword: inflow simulation

Search Result 369, Processing Time 0.027 seconds

AERODYNAMICS OF THE RAE 101 AIRFOIL IN GROUND EFFECT WITH THE OVERLAPPED GRID (중첩 격자 기법을 이용한 지면 효과를 받는 RAE 101 익형의 공력 해석)

  • Lee, J.E.;Kim, Y.;Kim, E.;Kwon, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.193-198
    • /
    • 2006
  • It takes a lot of time and effort to generate grids for numerical analysis of problems with ground effect because the relative attitude and height of airfoil should be maintained to the ground as well as the inflow. A low Mach number preconditioned turbulent flow solver using the overlap grid technique has been developed and applied to the ground effect simulation. It has been validated that the present method using the multi-block grid gives us highly accurate solutions comparing with the experimental data of the RAE 101 airfoil in an unbounded condition. Present numerical method has been extended to simulate ground effect problems by using the overlapped grid system to avoid tedious work in generating multi-block grid system. An extended method using the overlapped grid has been verified and validated by comparing with results of multi-block method and experimental data as well. Consequently, the overlapped grid method can provide not only sufficiently accurate solutions but also the efficiency to simulate ground effect problems. It is shown that the pressure and aerodynamic centers move backward by the ground effect as the airfoil approaches to the ground.

  • PDF

A Numerical Solution. Method for Two-dimensional Nonlinear Water Waves on a Plane Beach of Constant Slope

  • Lee, Young-Gill;Heo, Jae-Kyung;Jeong, Kwang-Leol;Kim, Kang-Sin
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. The second-order Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with the plane beach of constant slope in surf zone. The results are compared with other existing experimental results. Agreement between the experimental data and the computation results is good.

A Study on the High Lifting Device Equipped with the Trailing Edge Rotor for the Enhancement of Circulation Control (뒷날에 붙인 회전자로 순환유동을 강화하는 날개장치의 성능 연구)

  • Oh, Jung-Keun;Kim, Hyo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.533-542
    • /
    • 2010
  • For a long times it has been believed that the Magnus effect of the rotating cylinder could be utilized for the lifting devices applicable to marine practices. It has been reported that the rotating cylinder installed on upper deck of commercial vessel could play a energy saving role however the idea might be applicable in a very rare case in ship building practices. In this study special high lift rudder system equipped with the trailing edge rotor has been suggested in correspondence with the increasing requirement of greater rudder force. Through the numerical simulation it is cleared that the trailing edge rotor could play a role in enhancement of circulation and refinement of boundary layer of the rudder system. At the same time it is found out that the lift force of the rudder system without rotation of trailing edge rotor could be doubled when the circumferential velocity of the trailing edge rotor is equal to twice of the inflow velocity.

Analysis of land-based circular aquaculture tank flow field using computational fluid dynamics (CFD) simulation (전산 유체 역학(CFD)을 이용한 원형 양식 사육 수조 내부 유동장 해석)

  • KWON, Inyeong;KIM, Taeho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.395-406
    • /
    • 2020
  • The objectives of this study were to develop the optimal structures of recirculating aquaculture tank for improving the removal efficiency of solid materials and maintaining water quality conditions. Flow analysis was performed using the CFD (computational fluid dynamics) method to understand the hydrodynamic characteristics of the circular tank according to the angle of inclination in the tank bottom (0°, 1.5° and 3°), circulating water inflow method (underwater, horizontal nozzle, vertical nozzle and combination nozzle) and the number of inlets. As the angle in tank bottom increased, the vortex inside the tank decreased, resulting in a constant flow. In the case of the vertical nozzle type, the eddy flow in the tank was greatly improved. The vertical nozzle type showed excellent flow such as constant flow velocity distribution and uniform streamline. The combination nozzle type also showed an internal spiral flow, but the vortex reduction effect was less than the vertical nozzle type. As the number of inlets in the tank increased, problems such as speed reduction were compensated, resulting in uniform fluid flow.

AERODYNAMIC EFFECTS OF THE TAB ON A HOVERING ROTOR BLADE (정지비행 로터 블레이드에 부착된 탭의 공기역학적 효과)

  • Kang, H.J.;Kim, D.H.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.60-66
    • /
    • 2013
  • Numerical simulation was performed for the rotor blade with fixed tab in hover using an unstructured mesh Navier-Stokes flow solver. The inflow and outflow boundary conditions using 1D momentum and 3D sink theory were applied to reduce computational time. Calculations were performed at several operating conditions of varying collective pitch angle and fixed tab length. The aerodynamic effect of fixed tab length was investigated for hovering efficiency, pitching moment and flapping moment of the rotor blade. The results show that it affects linearly increasing on the pitching moment of the rotor blade but does not affect on the flapping moment. The required power is less than 45kw for ground rotating test in hover. Numerical simulations also show that the vortex generate not only from the tip of the rotor blade but also from the fixed tab on the rotor blade.

Simulation of Turbid Water in the Stratified Daecheong Reservoir during Gate Operation (댐 배수조작에 따른 저수지내 탁수변화 모의 - 대청댐을 대상으로 -)

  • Lee, Jae-Yil;Seo, Se-Deok;Lee, Gyu-Sung;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.377-386
    • /
    • 2009
  • Due to severe flooding, the long-term residence of turbidity flows within the stratified Daecheong Reservoir have lengthened. A long-term residence of turbidity flows within the stratified Daecheong Reservoir after floods has been major environmental issue. The objective of this study was to assess the impact to water supply from the hydrodynamics and turbidity outflow. Two gate operation scenarios were investigated. Scenario A refers to gate operations according to rainfall events, and scenario B refers to gate operations according to inflow. From the results of secenario A, the SS concentrations decreased from 0.44mg/l to 0.54mg/l at the front of the dam, whereas SS concentrations increased from 0.24mg/l to 1.24mg/l at the intake points at Munhi and Daejeon. From the results of scenario B, the SS concentrations decreased from 0.61mg/l to 0.83mg/l at the front of Dam; howeve, SS concentrations also decreased from 0.16mg/l to 0.48mg/l at the intake points at Munhi and Daejeon. It seems that it may be more efficient to control turbidity by creating additional outflows of generated discharge after intensive rainfalls than not.

Conceptual Modeling Coupled Thermal-Hydrological-Chemical Processes in Bentonite Buffer for High-Level Nuclear Waste Repository (고준위 방사성폐기물 처분장에서 벤토나이트 완충제에 대한 열-수리-화학 작용 개념 모델링)

  • Choi, Byoung-Young;Ryu, Ji-Hun;Park, Jinyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

Development of a Decision Support System for Turbid Water Management through Joint Dam Operation

  • Kim, Jeong-Kon;Ko, Ick-Hwan;Yoo, Yang-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.31-39
    • /
    • 2007
  • In this study we developed a turbidity management system to support the operation for effective turbid water management. The decision-making system includes various models for prediction of turbid water inflow, effective reservoir operation using the selective withdrawal facility, analysis of turbid water discharge in the downstream. The system is supported by the intensive monitoring devices installed in the upstream rivers, reservoirs, and downstream rivers. SWAT and HSPF models were constructed to predict turbid water flows in the Imha and Andong catchments. CE-QUAL-W2 models were constructed for turbid water behavior prediction, and various analyses were conducted to examine the effects of the selective withdrawal operation for efficient high turbid water discharge, turbid water distribution under differing amount and locations of turbid water discharge. A 1-dimensional dynamic water quality model was built using Ko-Riv1 for simulation of turbidity propagation in the downstream of the reservoirs, and 2-dimensional models were developed to investigate the mixing phenomena of two waters discharged from the Andong and Imha reservoirs with different temperature and turbidity conditions during joint dam operation for reducing the impacts of turbid water.

  • PDF

A Study on Mulwang Reservoir Water Quality Improvement Effect Using Watershed-Reservoir Integrated Prediction (유역-호소 통합수질예측 기법을 이용한 물왕저수지 수질개선효과 분석)

  • Oh, Heesang;Rhee, Han-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • Since living environment has improved, waterfront space using and clear water demand have increased. Ministry of Environment (ME) designated polluted reservoir (worse than 4th grade) as a priority management reservoir to improve water quality (better than 3rd grade) accordingly. Minstry of Agriculture, Food and Rural Affairs (MAFRA) aims reservoir water quality 4th not 3rd grade. And water quality of agricultural reservoirs was not a great interest. For this reason, there are very few water quality monitoring data. However after designating as a priority management reservoir, reservoir manager should start water quality and flow monitoring of reservoirs and inflow streams. This process makes it possible setting complex model to accurate prediction of reservoir water quality and volume. Mulwang reservoir designated as a priority management reservoir in September 2014. In this study, BASINS/WinHSPF and EFDC-WASP were used to predict effect of water quality improvement countermeasures in Mulwang reservoir. To improve water quality of Mulwang reservoir, Siheung-si and Korea Rural Community Corporation (KRCC) established water quality improvement countermeasures. However result of simulation adapting these countermeasures cannot achieve 3rd grade. So 4 additional scenarios were adapted and the result satisfied 3rd grade. This study could help to establish water quality improvement countermeasure by using complex modeling.

Observation of Reservoir Current Using Drifter (The Case Study of Yongdam Reservoir) (Drifter를 이용한 저수지 수리거동 조사 (용담댐을 중심으로))

  • Lee, Yo-Sang;Koh, Deok-Koo;Chae, Hyo-Sok;Han, Kyung-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.200-209
    • /
    • 2012
  • The current of the water body is very important information for the water quality management on reservoirs. It is applied to hydraulics and water quality model for simulation. In this regard, the current characteristic of water body is the basic information that can be used to predict various conditions. However, it is very slow flowing and is affected by the reservoir operations and external factors. As such, an accurate measurement of the current is a difficult problem. In order to measure the water current, we constructed a drifter. According to the result of flow survey at Yongdam reservoir, 5m and 10 m depth layer flow was investigated from the upstream to the downstream, during a flood period. Maximum flow rate of 5 m depth is 13.8 cm $sec^{-1}$ and 10 m depth shows 4 cm $sec^{-1}$, respectively. But 2m depth shows a backward flow and maximum flow rate is 4 cm $sec^{-1}$. Density currents flow plays the role of back flow in reservoirs. Flow velocity in the reservoir was measured in the range of 1~2 cm $sec^{-1}$, at normal flow season, and the flow direction were different for each survey. This phenomenon occurs because the reservoir volume is very large, compared to the inflow and outflow volume.