• Title/Summary/Keyword: inflow simulation

Search Result 369, Processing Time 0.022 seconds

Multiscale finite element method applied to detached-eddy simulation for computational wind engineering

  • Zhang, Yue;Khurram, Rooh A.;Habashi, Wagdi G.
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.1-19
    • /
    • 2013
  • A multiscale finite element method is applied to the Spalart-Allmaras turbulence model based detached-eddy simulation (DES). The multiscale arises from a decomposition of the scalar field into coarse (resolved) and fine (unresolved) scales. It corrects the lack of stability of the standard Galerkin formulation by modeling the scales that cannot be resolved by a given spatial discretization. The stabilization terms appear naturally and the resulting formulation provides effective stabilization in turbulent computations, where reaction-dominated effects strongly influence near-wall predictions. The multiscale DES is applied in the context of high-Reynolds flow over the Commonwealth Advisory Aeronautical Council (CAARC) standard tall building model, for both uniform and turbulent inflows. Time-averaged pressure coefficients on the exterior walls are compared with experiments and it is demonstrated that DES is able to resolve the turbulent features of the flow and accurately predict the surface pressure distributions under atmospheric boundary layer flows.

Star-gas misalignment in Horizon-AGN simulation

  • Khim, Donghyeon J.;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.74.3-75
    • /
    • 2019
  • Recent Integral Field Spectroscopy (IFS) studies revealed that not only late type galaxies (LTGs) but also early type galaxies (ETGs) have various kinds of kinematic rotation. (e.g. not clearly detectable rotation, disk-like rotation, kinematically distinct core (Cappellari 06)) Among the various studies about galactic kinematics, one of the most notable anomalies is the star-gas misalignment. The gas forms stars and stars release gas through mass-loss. In this process, their angular momentum is conserved. Therefore, kinematic decoupling between stars and gas can occur due to external gas inflow or perturbation of components. There are some possible origins of misalignment: cold gas from filaments, hot gas from outer halo, interaction or merging events with galaxies and environmental effects. Misalignment, the black box from mixture of internal and external gas, can be an important keyword for understanding further about galaxies' kinematics and external processes. Using both SAMI IFS data(Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey, Croom+12) and Horizon-AGN simulation(Dubois+14), we examined misaligned galaxies properties and distribution. Because the simulation has lots of galaxies at various z, we were able to study history of formation, evolution and extinction of misalignment, which was hard to be done with observation only.

  • PDF

A Study on the Design and Simulation of Sand Casting for Alumimum Turbo Fan in Tank Powerpack (전차 파워팩에 적용되는 알루미늄 터보 팬의 주조방안 설계 및 주조 해석에 관한 연구)

  • Jin, Chul-Kyu;Lee, Un-Gil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.889-898
    • /
    • 2022
  • In this study, sand casting process was applied to manufacture a large aluminum turbo-type fan used for tank powerpack. To apply the sand casting method, the turbo fan was reverse engineered, and after designing three gating systems, the optimal gating system design was selected by performing casting simulation. In the case of the bottom up-gating system, there is a significant temperature loss of the molten alloy during blade filling. When the molten alloy is completely filled into the sand mold, the blade upper tip and front shroud are below the liquidus temperature. In the case of the top down-gating system, molten alloy scattering occurs, but the temperature loss while the blade is filled is smaller than that of the bottom up type. And after the inflow of molten alloy into the mold is completed, the blade upper tip and front shroud are higher than the liquidus temperature. A sand mold was manufactured with the top down-gating system and the casting process was performed. The fan was made perfectly in appearance without any unfilled parts.

Cause Investigation for the Flooding and Sinking Accident of the Ro-Ro Ferry Ship (로로 여객선의 침수 및 침몰사고 원인규명)

  • Chung, Young-Gu;Lee, Jae-Seok;Ha, Jung-Hoon;Lee, Sang-Gab
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.264-274
    • /
    • 2020
  • The Ro-Ro ferry ship capsized and sank to the bottom of the sea because of the rapid turning for several reasons, such as lack of stability due to the center of gravity rise from the extension and rebuilding of the stern cabin, excessive cargo loading, and shortage ballast, poor lashing, etc. The purpose of this study was to investigate and analyze the cause of the ship's rapid flooding, capsizing, and sinking accident according to rapid turning scientifically and accurately using the Fluid-Structure Interaction( FSI) analysis technique. Several tests were conducted for this cause investigation of the flooding and sinking accident correctly and objectively, such as the realization of the accurate ship posture tracks according to the accident time using several accident movies and photos, the validation of cargo moving track, and sea water inflow amount through the exterior openings and interior paths compared with the ship's posture according to the accident time using the floating simulation and hydrostatic characteristics program calculation, and the performance of a full-scale ship flooding·sinking simulation.

Investigation of the change in physical habitat in the Geum-gang River by modifying dam operations to natural flow regime (자연유황 회복을 위한 댐 운영에 따른 금강의 물리서식처 변화 분석)

  • Choi, Byungwoong;Jang, Jiyeon;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.985-998
    • /
    • 2021
  • In general, the upstream dam changes downstream flow regime dramatically, i.e., from natural flow regime to hydropeaking flows. This study investigates the impact of the natural flow pattern on downstream fish habitat in a regulated river in Korea using the physical habitat simulation. The study area is a 13.4 km long reach of the Geum-gang River, located downstream from the Yongdam Dam, Korea. A field monitoring revealed that three fish species are dominant, namely Zacco platypus, Coreoleuciscus splendidus, and Opsariichthys bidens, and they account for 70% of the total fish community. Specially, Opsariichthys bidens is an indigenous species in the Geum-gang River. The three fish species are selected as target fish species for the physical habitat simulation. The Nays2D model, a 2D shallow water equation solver, and the HSI (Habitat Suitability Index) model are used for hydraulic and habitat simulations, respectively. To assess the impact of the natural flow pattern, this study uses the annual natural flow regime and hydropeaking flows from the dam. It is found that the natural flow regime increases significantly the Composite Suitability Index (CSI) in the study reach. Then, using the Building Block Approach (BBA), the scenarios for the modifying dam operations are presented in the study reach. Both Scenario 1 and scenario 2 are proposed by using the hydrological method considering both magnitude and duration of the inflow and averaging the inflow over each month, respectively. It is revealed that the natural flow regime embodied in scenario 1 and scenario 2 increases the Weighted Usable Area (WUA) significantly, compared to the hydropeaking flows. In conclusion, the modifying the dam operations by restoring to the natural flow pattern is advantageous to fish community.

The Development of a Input Data Automatic Generation System for the Storm Management Simulation based on UIS (UIS기반 홍수관리 시뮬레이션을 위한 입력 데이터 자동 생성 시스템 개발)

  • Kim, Ki-Uk;Lee, Jeong-Eun;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.247-256
    • /
    • 2008
  • Recently, natural disasters like flooding damages have frequently occurred as to typhoons and local downpours affected by the climate changes. Many researches have actively been studied in analysing runoff models, the verification of their parameters, and the inflow on surfaces in order to lessen the damages. However, much time and effort needs in generating input files of the models in most current researches. Therefore, in this paper we develop a system for generating a simulation input data automatically. This system is connected to the EPA-SWMM based on the spatial data in the UIS systems and consists the simulation module for analysing urban flooding and the SWMM simulator module. Also, we construct a prototype using a range of regular inundation to generate a simulation input file. This system gives advantages showing inundation areas based on the map viewer as well as lessening errors of input data and simulation time.

  • PDF

Development of agricultural reservoir water supply simulation system (농업용 저수지 용수공급 모의 시스템의 개발)

  • Jun, Sang Min;Kang, Moon Seong;Song, Inhong;Song, Jung-Hun;Park, Jihoon;Kee, Woosuk
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.2
    • /
    • pp.103-114
    • /
    • 2014
  • The objective of this study was to develop agricultural reservoir water supply simulation system to assess water cycle of agricultural water district. Developed system was named as ARWS (Agricultural Reservoir Water supply simulation System). ARWS consists of platform and independent modules. In ARWS, reservoir inflow was calculated using Tank model, and agricultural water supply was calculated considering current farming period and mid-summer drainage. ARWS was applied to simulate water level of Gopung and Tapjung reservoir in 2011 - 2012. The results were compared to simulation results of HOMWRS and observed data. Average $R^2$, EI, RMSE of ARWS were 0.76, 0.46, 1.78 (m), average $R^2$, EI, RMSE of HOMRWS were 0.88, -0.14, 2.37 (m) respectively. Considering statistical variances, water level simulation results of ARWS were more similar to observed data than HOMWRS. ARWS can be useful to estimate reservoir water supply and assess hydrological processes of agricultural water district.

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

Simulating three dimensional wave run-up over breakwaters covered by antifer units

  • Najafi-Jilani, A.;Niri, M. Zakiri;Naderi, Nader
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.297-306
    • /
    • 2014
  • The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

Development of Guidelines for Animal Waste Land Application to Minimize Water Quality Impacts (축산분뇨 농지환원을 위한 적정관리방안)

  • 홍성구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.136-146
    • /
    • 2002
  • Land application of manure compost is considered one of the widely-used animal waste management practices. Many livestock farms adopt composting for their animal waste disposal and apply the compost to crop fields. While standard rates have been established based on researches with respect to land application of manure compost recently, there have been few discussions on water quality impact of the application. Water quality impact should be taken into account in land applications of manure compost. In this study, management practices were proposed based on the investigation of water quality of leachate from manure compost under rainfall simulation, field studies, and monitoring runoff water quality from farm fields after land application of animal waste. The concentrations of major water quality parameters of the leachate were significantly high, whereas those of runoff from soils after tillage for soil incorporation, were not affected by the application based on a series of experiments. Runoff water from farm fields after land application also showed high concentrations of pollutants. Appropriate management practices should be employed to minimize pollutant loading from manure applied fields. Proposed major management practices include 1) application of recommended amounts, 2) proper tillage for complete soil and manure incorporation, 3) field management to prevent excessive soil erosion, 4) complete diversion of inflow into the field from outside, 5) implementation of vegetative buffer strips near boundaries, and 6) prevention of direct discharge of runoff water front fields Into streams.