• Title/Summary/Keyword: inflow model

Search Result 858, Processing Time 0.029 seconds

Application of Artificial Neural Network Ensemble Model Considering Long-term Climate Variability: Case Study of Dam Inflow Forecasting in Han-River Basin (장기 기후 변동성을 고려한 인공신경망 앙상블 모형 적용: 한강 유역 댐 유입량 예측을 중심으로)

  • Kim, Taereem;Joo, Kyungwon;Cho, Wanhee;Heo, Jun-Haeng
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.61-68
    • /
    • 2019
  • Recently, climate indices represented by quantifying atmospheric-ocean circulation patterns have been widely used to predict hydrologic variables for considering long-term climate variability. Hydrologic forecasting models based on artificial neural networks have been developed to provide accurate and stable forecasting performance. Forecasts of hydrologic variables considering climate variability can be effectively used for long-term management of water resources and environmental preservation. Therefore, identifying significant indicators for hydrologic variables and applying forecasting models still remains as a challenge. In this study, we selected representative climate indices that have significant relationships with dam inflow time series in the Han-River basin, South Korea for applying the dam inflow forecasting model. For this purpose, the ensemble empirical mode decomposition(EEMD) method was used to identify a significance between dam inflow and climate indices and an artificial neural network(ANN) ensemble model was applied to overcome the limitation of a single ANN model. As a result, the forecasting performances showed that the mean correlation coefficient of the five dams in the training period is 0.88, and the test period is 0.68. It can be expected to come out various applications using the relationship between hydrologic variables and climate variability in South Korea.

The Effect of Different Inflows on the Unsteady Hydrodynamic Characteristics of a Mixed Flow Pump

  • Yun, Long;Dezhong, Wang;Junlian, Yin;Youlin, Cai;Chao, Feng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • The problem of non-uniform inflow exists in many practical engineering applications, such as the elbow suction pipe of waterjet pump and, the channel head of steam generator which is directly connect with reactor coolant pump. Generally, pumps are identical designs and are selected based on performance under uniform inflow with the straight pipe, but actually non-uniform suction flow is induced by upstream equipment. In this paper, CFD approach was employed to analyze unsteady hydrodynamic characteristics of reactor coolant pumps with different inflows. The Reynolds-averaged Naiver-Stokes equations with the $k-{\varepsilon}$ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The complicated structure of channel head induces the inlet flow non-uniform. The non-uniformity of the inflow induces the difference of vorticity distribution at the outlet of the pump. The variation law of blade to blade velocity at different flow rate and the difference of blade to blade velocity with different inflow are researched. The effects of non-uniform inflow on radial forces are absolutely different from the uniform inflow. For the radial forces at the frequency $f_R$, the corresponding amplitude of channel head are higher than the straight pipe at $1.0{\Phi}_d$ and $1.2{\Phi}_d$ flow rates, and the corresponding amplitude of channel head are lower than the straight pipe at $0.8{\Phi}_d$ flow rates.

Characteristics of Small Hydro Power Resources for River System (수계별 소수력자원의 특성)

  • Park, Wansoon;Lee, Chulhyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.193.1-193.1
    • /
    • 2010
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF

A Development of Inflow Forecasting Models for Multi-Purpose Reservior (다목적 저수지 유입량의 예측모형)

  • Sim, Sun-Bo;Kim, Man-Sik;Han, Jae-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.411-418
    • /
    • 1992
  • The purpose of this study is to develop dynamic-stochastic models that can forecast the inflow into reservoir during low/drought periods and flood periods. For the formulation of the models, the discrete transfer function is utilized to construct the deterministic characteristics, and the ARIMA model is utilized to construct the stochastic characteristics of residuals. The stochastic variations and structures of time series on hydrological data are examined by employing the auto/cross covariance function and auto/cross correlation function. Also, general modeling processes and forecasting method are used the model building methods of Box and Jenkins. For the verifications and applications of the developed models, the Chungju multi-purpose reservoir which is located in the South Han river systems is selected. Input data required are the current and past reservoir inflow and Yungchun water levels. In order to transform the water level at Yungchon into streamflows, the water level-streamflows rating curves at low/drought periods and flood periods are estimated. The models are calibrated with the flood periods of 1988 and 1989 and hourly data for 1990 flood are analyzed. Also, for the low/drought periods, daily data of 1988 and 1989 are calibrated, and daily data for 1989 are analyzed.

  • PDF

Design Parameters of Small Hydro Power Sites for River Systems(II) (소수력발전입지의 수계별 설계변수 특성(II))

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study show that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites had some difference between the river systems. Especially, the specific design flow and specific output of SHP sites located on North Han river and Nakdong river systems had large difference compared with other river systems.

Analysis of Discharge Characteristics for the Seawater Exchange Breakwater Composed of Tunneled Breakwater and Submerged Mound (잠제가 설치된 유공형 해수교환방파제의 도수량 특성 분석)

  • Jeong, Shin-Taek;Lee, Dal-Soo;Cho, Hong-Yeon;Oh, Young-Min
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.465-473
    • /
    • 2004
  • Five parameters such as the entrance size of the front wall, conduit size, wave period, wave height and the width of water pool were selected to estimate the inflow rate, which is basic and essential input data to design seawater exchange breakwater with a submerged mound by conducting hydraulic model experiments. In the results of multiple regression analysis, log-log equation showed a good agreement rather than linear equation and the estimation of inflow rate was well done with only two parameters except entrance size of the front wall, wave period and the width of water pool. Finally, non-dimensional flow rate equation is derived.

Characteristic Analysis of Small Hydro Power Resources for River System (수계별 소수력자원의 특성 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.235-240
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong darn. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF

Flood Risk Management for Weirs: Integrated Application of Artificial Intelligence and RESCON Modelling for Maintaining Reservoir Safety

  • Idrees, Muhammad Bilal;Kim, Dongwook;Lee, Jin-Young;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.167-167
    • /
    • 2020
  • Annual sediment deposition in reservoirs behind weirs poses flood risk, while its accurate prediction remains a challenge. Sediment management by hydraulic flushing is an effective method to maintain reservoir storage. In this study, an integrated approach to predict sediment inflow and sediment flushing simulation in reservoirs is presented. The annual sediment inflow prediction was carried out with Artificial Neural Networks (ANN) modelling. RESCON model was applied for quantification of sediment flushing feasibility criteria. The integrated approach was applied on Sangju Weir and also on estuary of Nakdong River (NREB). The mean annual sediment inflow predicted at Sangju Weir and NREB was 400,000 ㎥ and 170,000 ㎥, respectively. The sediment characteristics gathered were used to setup RESCON model and sediment balance ratio (SBR) and long term capacity ratio (LTCR) were used as flushing efficiency indicators. For Sangju Weir, the flushing discharge, Qf = 140 ㎥/s with a drawdown of 5 m, and flushing duration, Tf = 10 days was necessary for efficient flushing. At NREB site, the parameters for efficient flushing were Qf = 80 ㎥/s, Tf = 5 days, N = 1, Elf = 2.24 m. The hydraulic flushing was concluded feasible for sediment management at both Sangju Weir and NREB.

  • PDF