• Title/Summary/Keyword: inflow concentration

Search Result 373, Processing Time 0.027 seconds

Mathematical Description of the Volume of Distribution in the Isolated Organ

  • Kim, Chong-Kook;Kim, Yang-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.10 no.1
    • /
    • pp.1-3
    • /
    • 1980
  • The model of an isolated organ system has been developed to simulate the kinetic behavior of drug levels in an acting organ or site. The model is developed from basic considerations of drug distribution with hemodynamical and pharmacokinetical meanings. Model: It is considered a situation in which non-metabolic drug substance is injected into the arterial inflow of an isolated organ at constant rate. The volume of distribution and the concentration of drug in the venous outflow can be mathematically expressed as a function of time.

  • PDF

A study on sedimentation characteristic according to concentration change of top soil lost by flood (유실토양의 농도변화에 따른 침강특성에 대한 연구)

  • Jeon, Young-Bong;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.581-587
    • /
    • 2014
  • Sediment basin that is typical facility installed for development business to prevent soil erosion has low removal efficiency and therefore, it causes complaints from the residents and has a bad effect on ecosystem. Thus there is a limit to control soil erosion using the existing design methods of sediment basin, so the purposes of this study is providing suitable design factors for sediment basin with regarding soil characteristic of development areas and analysing sedimentation characteristic by inflow concentration changes. The results, for analyzing the sedimentation characteristic by soil concentrations within approximately 2,000 ~ 20,000 mg/L of initial SS concentration, indicated similar sedimentation trends for same soil in the supernatant regardless of initial concentrations. However, for different soil characteristic (percent finer), there are different results in sedimentation rate and concentrations of the supernatant. Thus it is recommended that sediment basin to prevent soil erosion during construction should be designed based on retention time derived from soil sedimentation experiments regardless of inlet concentration. In addition, installing the soil erosion prevention facility at the back to satisfy effluent water quality should be considered to minimize soil erosion effectively.

A Study on the Cu2+ Behavior in Activated Sludge Process (활성슬러지공정에서 구리의 거동에 관한 연구)

  • Park, Jin-Do;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1119-1127
    • /
    • 2010
  • The behavior of copper throughout the whole process of wastewater treatment plant that uses the activated sludge process to treat the wastewater of petrochemical industry that contains low concentration of copper was investigated. Total inflow rate of wastewater that flows into the aeration tank was $697\;m^3$/day with 0.369 mg/L of copper concentration, that is, total copper influx was 257.2 g/day. The ranges of copper concentrations of the influent to the aeration tank and effluent from the one were 0.315 ~ 0.398 mg/L and 0.159 ~ 0.192 mg/L, respectively. The average removal rate of copper in the aeration tank was 50.8 %. The bioconcentration factor (BCF) of copper by microbes in the aeration tank was 3,320. The accumulated removal rate of copper throughout the activated sludge process was 71.3%, showing a high removal ratio by physical and chemical reactions in addition to biosorption by microbes. The concentration of copper in the solid dehydrated by filter press ranged from 74.8 mg/kg to 77.2 mg/kg and the concentration of copper by elution test of waste was 2.690 ~ 2.920 mg/L. It was judged that the copper concentration in dehydrated solid by bioconcentration could be managed with the control of that in the influent.

The Impact of Monsoon on Seasonal Variability of Basin Morphology and Hydrology (호수 지형 및 수리수문학적 변화에 대한 몬순 영향)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.342-349
    • /
    • 2000
  • This paper demonstrates the influence of intensity of the monsoon on morpho-hydrological fluctuations in Taechung Reservoir during 1993${\sim}$1994. During the study, hydrological variables including rainfall, inflow, and discharge volume showed distinct contrast between 1993 and 1994. Interannaul differences in rainfall occurred during the monsoon in July${\sim}$August monsoon and influenced inflow, discharge, and water residence time (WRT). Total inflow in 1993 was four times greater than that of 1994, and summer inflow in 1993 was 8 times greater than summer 1994. Annual Mean WRT was 93.2 d in 1993 vs. 158.6 d in 1994 and the largest differences occurred between monsoons of 1993 and 1994. Morphometric variables reflected the interannual contrasts of hydrology, so that in 1993 surface area, total volume, shoreline development, and mean depth increased consistently from premonsoon to postmonsoon and over this same period in 1994 they decreased. This outcome indicates that the area of shallow littoral zones in 1993 was greater than in 1994. Also, the drainage area to surface area (D/L) at 80 m MSL was 60.7 which was much greater than values in Soyang and Andong reservoirs and natural lakes world-wide. The morpho-hydrodynamic conditions seemed to influence in-reservoir nutrient concentration which is one of the most important factors regulating the eutrophication processes. I believe, under the maximum hydrodynamic fluctuations in Korean waterbodies during the monsoon, applications of mass balance models to man-made lakes for assessments of external loading should be considered because the models can be used under the seasonally stable inflow and water residence time.

  • PDF

Interference and Re-Inflow of Contaminated Air in Successive Tunnel (연속터널에서의 오염물질 재유입 및 환기영향평가)

  • Kim, Young-Geun;Kim, Woo-Sung;Wye, Yong-Gon;Kim, Nam-Yung;Lee, Ho-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.115-134
    • /
    • 2003
  • Recently, there are many cases in the roadway design for successive tunnel with small distance between two tunnels. In this case, the degree of interference for successive tunnels is a significant consideration in the design of ventilation systems. Also, Re-inflows of contaminated air in successive tunnel make serious ventilation problems in case of fire accident in the tunnel. In this study, for successive tunnels in Donghae highway project, the concentration of contaminant such as CO, NOx and Smoke were calculated by numerical analysis using 1D and 3D-CFD analysis. And, the rate of re-inflow at the portals of successive tunnel according to the direction of wind were analysed.

  • PDF

Characteristics of Inflow Water Quality Variations and Pollutants Transport in Imha Reservoir during a Rainfall Event (강우시 임하호 유입수 수질변동과 오염물질의 공간적 이동 특성)

  • Lee, Heung Soo;Shin, Myung Jong;Yoon, Sung Wan;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.97-106
    • /
    • 2013
  • The temporal and spatial variations of water quality in a stratified reservoir are fully dependent on the characteristics of inflow loading from its watershed and the transport regimes of pollutants after entering the reservoir. Because of the meteorological and hydrological conditions in Korea, the pollutants loading to reservoirs are mostly occur during rainfall events. Therefore it is important to understand the characteristics of pollutants loading from upstream rivers and their spatial propagation through the stratified reservoir during the rainfall events. The objectives of this study were to characterize the water quality variations in upstream rivers of Imha Reservoir during a rainfall event, and the transport and spatial variations of pollutants in the reservoir through extensive field monitoring and laboratory analysis. The results showed that the event mean concentration (EMC) of SS, BOD, $COD_{Mn}$, T-N, T-P, $PO_4-P$ are 8.6 ~ 362.1, 2.5 ~ 5.1, 1.5 ~ 5.1, 1.1 ~ 1.9, 8.3 ~ 57.1, 5.6 ~ 25.7 times greater than the mean concentrations of these parameters during non-rainfall period. The turbidity and SS data showed good linear correlations, but the relationships between flow and SS showed large variations because of hysteresis effect during rising and falling periods of the flood. The ratio of POC to TOC were 12.6 ~ 14.7% during the non-rainfall periods, but increased up to 28.2 ~ 41.7% during the flood event. The turbid flood flow formed underflow and interflow after entering the reservoir, and delivered a great amount of non-point pollutants such as labile and refractory organic matters and nutrients to the metalimnion layer of reservoir, which is just above the thermocline. Spatially, the lateral variations of most water quality parameters were marginal but the vertical variations were significant.

Evaluation of the impact of sewage treatment plants in the Linked treatment through the sewage treatment computer simulation program (하수처리 전산모사 프로그램을 통한 연계처리시 하수처리장 영향 평가)

  • Kim, Sungji;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.321-327
    • /
    • 2020
  • Recently The amount of wastewater and linked wastewater is being increased every year due to industrial development, population growth, and improvement in living standards. Linked wastewater shows the feature-low flow rate and high concentration. Therefore, it has been shown that it has a great impact on the operation of the sewage treatment plant and costs a lot for treating linked wastewater. In this study, a scenario with low increase of water quality when the total amount of the inflow of linked wastewater was entered into individual reactors is obtained. According to the result of modeling, The effluent water quality get the least increment once the water was introduced into the influent and anoxic tank. We generated the various scenarios Based on these results. scenarios are varying according to inflow from linked waste water's distribution ration. As a result of modeling through various scenarios, it was found that the increment of TN and TP were at the least when the inflow of linked water was distributed with ratio between sewage (80%) and oxygen-free tank (20%).

Temporal variations of nutrients and chlorophyll-a in the Bottol Bada in July, 2004 (2004년 7월 봇돌바다의 영양염과 chlorophyll-a의 단기 변동)

  • Choi Yong-Kyu;Cho Eun-Seob;Kwon Kee-Young;Lee Yong-Hwa;Lee Young-Sik
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.397-404
    • /
    • 2005
  • In order to study the temporal variations of nutrients and chlorophyll-a in the Bottol Bada, three field observations were carried out on 20, 23 and 26 July, 2004. The low N:P values exhibit nitrogen deficiency during the periods of observation. This result is not representative of typical summer environment in the southern coast of Korea. The possible mechanisms are as follows: 1) The freshwater inflow was not sufficient for the supply of nitrogen because the total precipitation was 11.9 mm in July, 2004. This amount is no more than $5\%$ in normal precipitation in July. 2) There was an inflow of oceanic water under the subsurface into the Bottol Bada. Even though the oceanic water comprises more nutrients, it produces the stratification between the surface and the subsurface water and seems to prevent the supply of nutrinets to the surface layer. 3) The high chlorophyll-a concentration of $1.2 {\cal}ug/L$ was shown near the narrow channel between Gae-do and Geumo-do. This seems to be resulted from the inflow of water from Gamak Bay.

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

Real-time Flood Forecasting Model Based on the Condition of Soil Moisture in the Watershed (유역토양수분 추적에 의한 실시간 홍수예측모형)

  • 김태철;박승기;문종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.81-89
    • /
    • 1995
  • One of the most difficult problem to estimate the flood inflow is how to understand the effective rainfall. The effective rainfall is absolutely influenced by the condition of soil moisture in the watershed just before the storm event. DAWAST model developed to simulate the daily streamflow considering the meteologic and geographic characteristics in the Korean watersheds was applied to understand the soil moisture and estimate the effective rainfall rather accurately through the daily water balance in the watershed. From this soil moisture and effective rainfall, concentration time, dimensionless hydrograph, and addition of baseflow, the rainfall-runoff model for flood flow was developed by converting the concept of long-term runoff into short-term runoff. And, real-time flood forecasting model was also developed to forecast the flood-inflow hydrograph to the river and reservoir, and called RETFLO model. According to the model verification, RETFLO model can be practically applied to the medium and small river and reservoir to forecast the flood hydrograph with peak discharge, peak time, and volume. Consequently, flood forecasting and warning system in the river and the reservoir can be greatly improved by using personal computer.

  • PDF