• Title/Summary/Keyword: inflow boundary condition

Search Result 56, Processing Time 0.026 seconds

Diffusion Simulation Using Envi-Met. in Urban Planetary Boundary Layer (Envi-Met.을 이용한 도심 대기경계층 내 확산장 변화 수치 모의)

  • Choi, Hyun-Jeong
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.357-371
    • /
    • 2016
  • Buildings in the city acts as a cause of distorted wind direction, wind speed, causing the stagnation of the air flow. In the recent trend of climate change can not but consider the temperature rise of the urbanization. This study was aimed to analyze the thermal comfort of planetary boundary layer in different artificial constructions areas which has a direct impact on urban climate, and estimating the warming phenomena. Envi-met model was used to consider the urban structure associated with urban growth in order to precisely determine the impact of the building on the city weather condition. The analyzed values of thermal comfort index were temperature, wind speed, horizontal and vertical turbulent diffusivity. In particular, analysis of the PPD(Predicted Percentage of Dissatisfied) represents the human thermal comfort. In this study, by adjusting the arrangement and proportion of the top floor building in the urban it was found that the inflow of the fresh air and cooling can be derived low PPD. Vertical heat flux amount of the city caused by climate change was a factor to form a high potential temperature in the city and the accumulation of cold air does not appear near the surface. Based on this, to make the city effectively respond to climate change may require a long-term restructuring of urban spatial structure and density management.

Numerical study of dividing open-channel flows at bifurcation channel using TELEMAC-2D (TELEMAC-2D모형을 이용한 개수로 분류흐름에 대한 수치모의 연구)

  • Jung, Dae Jin;Jang, Chang-Lae;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.635-644
    • /
    • 2016
  • This study investigates variation of flow characteristics due to variation of branch channel width and discharge ratio at bifurcation channel using 2D numerical model. The calculated result considering secondary flow is more accurate and stable than without considering one. The diversion flow rate ($Q_3/Q_1$) is reduced by flow stagnation effect according to the interaction of the secondary flow and flow separation zone in branch channel. The less upstream inflow or the lower upstream velocity, the bigger variation of diversion flow rate by changing branch channel width. At uniform downstream boundary condition, the rate of change in Froude number of downstream of main channel($Fr_2$)-diversion flow rate ($Q_3/Q_1$) relations is similar about -2.4843~-2.6675 when branch channel width ratio (b/B) is decreased. At uniform diversion flow rate ($Q_3/Q_1$) condition, the width of recirculation zone in branch channel is decreased when branch channel width ratio (b/B) is decreased. The less upstream inflow in the case of increasing branch channel width or the narrower branch channel width in the case of increasing upstream inflow, the bigger reduction ratio of recirculation zone width. At uniform inflow discharge ($Q_1$) condition, diversion flow rate, the width and length of recirculation zone in branch channel are decreased when branch channel width ratio (b/B) is decreased.

A Two-dimensional Hydraulic Analysis Considering the Influence of River Inflow and Harbor Gate in the Bay (Harbor Gate와 유입하천의 영향을 고려한 만내의 2차원 수리해석)

  • Lee, Jae Joon;Lee, Hoo Sang;Shim, Jae Sol;Yoon, Jong Ju
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • In this study, when seawall or harbor gate is installed for coastal disaster prevention, a two-dimensional water analysis in the bay is carried out to consider the flood amount of river inflow and effect of harbor gate. The Yeongsan river and the port Mokpo area are selcected for the study region. Then, by analyzing the hydraulic characteristics of flood flow of the Yeongsan river, we analysed the compatibility of the results in the two-dimensional hydrodynamic model. A tw-odimensional water analysis were conducted for the four cases considering whether a harbor gate is installed or not, and whether the inland water boundary condition is considered or not, also with open sea boundary condition. The results of the two-dimensional water analysis shows that water level change near the port Mokpo area is mainly caused by the discharge of the estuary barrage of the Yeongsan river because the harbor gate was installed. In addition, it is revealed that the volume of reservoir created by the harbor gate and the estuary barrage is too much small compared to the volume of the discharge from the Yeongsan river. Therefore, when the harbor gate is installed in the open sea, we concluded that a flexible management between the harbor gate and the estuary barrage of the Yeongsan river is required. A initial water level of the bay and outflow from the harbor gate are proposed for disaster prevention in the coastal area of port Mokpo.

Prediction of Salinity Changes for Seawater Inflow and Rainfall Runoff in Yongwon Channel (해수유입과 강우유출 영향에 따른 용원수로의 염분도 변화 예측)

  • Choo, Min Ho;Kim, Young Do;Jeong, Weon Mu
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.297-306
    • /
    • 2014
  • In this study, EFDC (Environmental Fluid Dynamics Code) model was used to simulate the salinity distribution for sea water inflow and rainfall runoff. The flowrate was given to the boundary conditions, which can be calculated by areal-specific flowrate method from the measured flowrate of the representative outfall. The boundary condition of the water elevation can be obtained from the hourly tidal elevation. The flowrate from the outfall can be calculated using the condition of the 245 mm raifall. The simulation results showed that at Sites 1~2 and the Mangsan island (Site 4) the salinity becomes 0 ppt after the rainfall. However, the salinity is 30 ppt when there is no rainfall. Time series of the salinity changes were compared with the measured data from January 1 to December 31, 2010 at the four sites (Site 2~5) of Yongwon channel. Lower salinities are shown at the inner sites of Yongwon channel (Site 1~4) and the sites of Songjeong river (Site 7~8). The intensive investigation near the Mangsan island showed that the changes of salinity were 21.9~28.8 ppt after the rainfall of 17 mm and those of the salinity were 2.33~8.05 ppt after the cumulative rainfall of 160.5 mm. This means that the sea water circulation is blocked in Yongwon channel, and the salinity becomes lower rapidly after the heavy rain.

-A Study on a Mathematical Model for Water Quality Prediction for Rivers- (하천(河川)의 수질예측(水質豫測)을 위한 수치모형(數値模型)에 관한 연구(硏究))

  • Kim, Sung-Soon;Lee, Yang-Kyoo;Kim, Gap-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.73-86
    • /
    • 1995
  • The propriety of the numerical model application was examined on Paldang resevoir and its inflow tributaries located in the center of the Korean peninsula and the long term water quality forecast of the oxygen profile was carried out in this syduy. The input data of the model was the capacity of the reservoir, catchment area, percolation, diffusion rate, vertical mixing rate, dissolution rate from the bottom of the reservoir, outflow of the resevoir, water quality measurement and meteorology data of the drainage basin, and the output result was the annual estimation value of the dissolved oxygen concentration and the biochemical oxygen demand. The modeling method is based on the measured or calculated boundary condition dividing the water area into several blocks from the macorscopic aspect and considering the mass balance in these blocks. As the result of the water quality forecast, it was expected that the water quality in Northern Han River and Paldang reservoir would maintain the recent level, but that the water quality in the Southern Han River and its inflow tributary would worsen below the grade 4 of the life environmental standard from around 2000 owing to the decrease of DO concentration and the increase of BOD concentration.

  • PDF

Calculation of the Effective Wake in a Radially Sheared Inflow (유효반류 계산에 관한 연구)

  • E.D.,Park;S.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.73-83
    • /
    • 1990
  • A theorectical method is presented for the calculation of the effective wake in an axisymmetric sheared inflow. The effective wake is essential in the design of optimal propulsor and in the reduction of propulsor induced vibration and noise. The nominal wakes are mathematically modelled and the effective wakes are calculated using the computer program developed on the basis of the linear momentum theory. The results show that shear effects arc dominant near the hub and the effective wakes reveal some differences near the hub for the moderately and heavily loaded propulsors but they arc well coincided with the other experimental or theorectical results for the lightly loaded propulsors. To improve the results it may be necessary to consider nonlinear terms neglected in this study and body boundary condition on hub.

  • PDF

Influence of Inlet Secondary Curvature on Hemodynamics in Subject-Specific Model of Carotid Bifurcations (환자 특정 경동맥 분기부 모델 혈류유동에 대한 입구부 이차곡률의 영향)

  • Lee, Sang-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.479-486
    • /
    • 2011
  • In image-based CFD modeling of carotid bifurcation hemodynamics, it is often not possible (or at least not convenient) to impose measured velocity profiles at the common carotid artery inlet. Instead, fully-developed velocity profiles are usually imposed based on measured flow rates. However, some studies reported a pronounced influence of inflow boundary conditions that were based on actual velocity profiles measured by magnetic resonance imaging which showing the unusual presence of a high velocity band in the middle of the vessel during early diastole inconsistent with a Dean-type velocity profile. We demonstrated that those velocity profiles were induced by the presence of modest secondary curvature of the inlet and set about to test whether such more "realistic" velocity profiles might indeed have a more pronounced influence on the carotid bifurcation hemodynamics. We found that inlet boundary condition with axisymmetric fully-developed velocity profile(Womersley flow) is reasonable as long as sufficient CCA inlet length of realistic geometry is applied.

Evaluation of EFDC for the Simulations of Water Quality in Saemangeum Reservoir (새만금호 수질예측 모의를 위한 EFDC 모형의 평가)

  • Jeon, Ji Hye;Chung, Se Woong;Park, Hyung Seok;Jang, Jeong Ryeol
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.445-460
    • /
    • 2011
  • The objective of this study was to construct and assess the applicability of the EFDC model for Saemangeum Reservoir as a 3D hydrodynamic and water quality modeling tool that is necessary for the effective management of water quality and establishment of conservation measures. The model grids for both reservoir system only and reservoir-ocean system were created using the most recent survey data to compare the effects of different downstream boundary conditions. The model was applied for the simulations of temperature, salinity, water quality variables including chemical oxygen demand (COD), chlorophyll-a (Chl-a), phosphorus and nitrogen species and algal biomass, and validated using the field data obtained in 2008. Although the model reasonably represented the temporal and spatial variations of the state variables in the reservoir with limited boundary forcing data, the salinity level was underestimated in the middle and upstream of the reservoir when the flow data were used at downstream boundaries; Sinsi and Garyuk Gates. In turn, the error caused to increase the bias of water quality simulations, and inaccurate simulation of density flow regime of river inflow during flood events. It is likely because of the loss of momentum of sea water intrusion at downstream boundaries. In contrast to flow boundary conditions, the mixing between sea water and freshwater was well reproduced when open water boundary condition was applied. Thus, it is required to improve the downstream boundary conditions that can accommodate the real operations of the sluice gates.

Dynamic Analysis of Structure-Fluid-Soil Interaction Problem of a Bridge Subjected to Seismic-Load Using Finite Element Method (유한요소법을 이용한 지진하중을 받는 교량의 구조물-유체-지반 동적 상호작용해석)

  • You, Hee-Yong;Park, Young-Tack;Lee, Jae-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.67-75
    • /
    • 2008
  • In construction facilities such as bridges, the fluid boundary layer(or water film) is formed at the structure-soil interface by the inflow into the system due to rainfall or/and rising ground-water. As a result, the structure-soil interaction(SSI) state changes into the structure-fluid-soil interaction(SFSI) state. In general, construction facilities may be endangered by the inflow of water into the soil foundation. Thus, it is important to predict the dynamic SFSI responses accurately so that the facilities may be properly designed against such dangers. It is desired to have the robust tools of attaining such a purpose. However, there has not been any report of a method for the SFSI analyses. The objective of this study is to propose an efficient method of finite element modelling using the new interface element named hybrid interface element capable of giving reasonable predictions of the dynamic SFSI response. This element enables the simulation of the limited normal tensile resistance and the tangential hydro-plane behaviour, which has not been preceded in the previous studies. The hybrid interface element was tested numerically for its validity and employed in the analysis of SFSI responses of the continuous bridge subjected to seismic load under rainfall or/and rising ground-water condition. It showed that dynamic responses of the continuous bridge resting on direct foundation may be amplified under rainfall condition and consequently lead to significant variation of stresses.

High-Fidelity Ship Airwake CFD Simulation Method Using Actual Large Ship Measurement and Wind Tunnel Test Results (대형 비행갑판을 갖는 함정과 풍동시험 결과를 활용한 고신뢰도 함정 Airwake 예측)

  • Jindeog Chung;Taehwan Cho;Sunghoon Lee;Jaehoon Choi;Hakmin Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Developing high-fidelity Computational Fluid Dynamics (CFD) simulation methods used to evaluate the airwake characteristics along a flight deck of a large ship, the various kind of data such as actual ship measurement and wind tunnel results are required to verify the accuracy of CFD simulation. Inflow velocity profile at the bow, local unsteady flow field data around the flight deck, and highly reliable wind tunnel data which were measured after reviewing Atmospheric Boundary Layer (ABL) simulation and Reynolds Number effects were also used to determine the key parameters such as turbulence model, time resolution and accuracy, grid resolution and type, inflow condition, domain size, simulation length, and so on in STAR CCM+. Velocity ratio and turbulent intensity difference between Full-scale CFD and actual ship measurement at the measurement points show less than 2% and 1.7% respectively. And differences in velocity ratio and turbulence intensity between wind tunnel test and small-scale CFD are both less than 2.2%. Based upon this fact, the selected parameters in CFD simulation are highly reliable for a specific wind condition.