• Title/Summary/Keyword: inflammatory responses

Search Result 1,092, Processing Time 0.02 seconds

L1 Cell Adhesion Molecule Suppresses Macrophage-mediated Inflammatory Responses (L1 Cell Adhesion Molecule에 의한 대식세포 매개 염증반응의 억제 기전 분석)

  • Yi, Young-Su
    • YAKHAK HOEJI
    • /
    • v.60 no.3
    • /
    • pp.128-134
    • /
    • 2016
  • L1 cell adhesion molecule (L1CAM) is a cell surface molecule to initiate a variety of cellular responses through interacting with other cell adhesion molecules in a homophilic or heterophilic manner. Although its expression was found to be upregulated in some tumor cells, including cholangiocarcinomas, and ovarian cancers, and many studies have investigated the role of L1CAM in these cancers, its role in inflammatory responses has been poorly understood. In this study, we explored the role of L1CAM in macrophage-mediated inflammatory responses. L1CAM significantly suppressed the production of nitric oxide (NO), but induced cell proliferation in RAW264.7 cells. L1CAM expression was detectable, but its expression was markedly decreased by lipopolysaccharide (LPS) in RAW264.7 cells. In addition, the expression of pro-inflammatory genes, such as tumor necrosis factor (TNF)-${\alpha}$, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) induced by LPS was dramatically suppressed by L1CAM in RAW264.7 cells. L1CAM inhibited the transcriptional activities of NF-${\kappa}B$ and AP-1 while its cytoplasmic domain deletion form, $L1{\Delta}CD$ did not suppressed their activities in RAW264.7 cells. Moreover, L1CAM suppressed nuclear translocation of p65 and p50 as well as c-Jun, c-Fos and p-ATF2 which are transcription factors of NF-${\kappa}B$ and AP-1, respectively. In conclusion, L1CAM suppressed inflammatory responses in macrophages through inhibiting NF-${\kappa}B$ and AP-1 pathways.

Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia

  • Kim, MinJeong;Li, Yong-Xin;Dewapriya, Pradeep;Ryu, BoMi;Kim, Se-Kwon
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.398-403
    • /
    • 2013
  • Inflammatory conditions mediated by activated microglia lead to chronic neuro-degenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. This study was conducted to determine the effect of floridoside isolated from marine red algae Laurencia undulata on LPS (100 ng/ml) activated inflammatory responses in BV-2 microglia cells. The results show that floridoside has the ability to suppress pro-inflammatory responses in microglia by markedly inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS). Moreover, floridoside down-regulated the protein and gene expression levels of iNOS and COX-2 by significantly blocking the phosphorylation of p38 and ERK in BV-2 cells. Collectively, these results indicate that floridoside has the potential to be developed as an active agent for the treatment of neuro-inflammation.

Study on the Effects of Sopoongyangjetang on the Anti-allergic Effect, Analgesic Action and Anti-inflammatory Action. (消風痒除湯이 抗알레르기 및 鎭痛·消炎效果에 미치는 影響)

  • Kim, Su-Jeong;Kim, Jung-Ho;Chae, Byeong-Yun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 1993
  • Experimental studies were done to research the clinical effects of Sopoongyangjetang on the Anti-allergic effect, Analgesic action and Anti-inflammatory action. The results obtained as follows ; 1. In effect of Sopoongyangjetang on vascular permeability responses to intradermal serotonin, it had tendency to decrease, but was none significant effect. 2. In effect of Sopoongyangjetang on vascular permeability responses to intradermal histamine, it revealed significant effect. 3. In the homologous PCA provoked by the IgE-like antibody against white egg albumin, Sopoonyangjetang showed significant effect. 4. In the delayed type hypersensitivity responses to picryl chloride, Sopoongyangjetang was proved significant effect. 5. In the delayed type hypersensitivity responses to SRBC, Sopoongyangjetang revealed significant effect. 6. In analgesic action by acetic acid method, Sopoongyangjetang was recognized significantly. 7. In Anti-inflammatory action by carrageenine method, Sopoongyangjetang showed significant effect.

  • PDF

Cyanidin and Cyanidin-3-O-β-D-glucoside Suppress the Inflammatory Responses of Obese Adipose Tissue by Inhibiting the Release of Chemokines MCP-1 and MRP-2

  • Choe, Mi-Ran;Kang, Ji-Hye;Yoo, Hoon;Yang, Chae-Ha;Kim, Mi-Ok;Yu, Ri-Na;Choe, Suck-Young
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.148-153
    • /
    • 2007
  • Obesity-induced inflammation plays a crucial role in obesity-related pathologies such as type II diabetes and atherosclerosis. Adipose tissue macrophages and the cell-derived proinflammatory chemokines are key components in augmenting inflammatory responses in obesity. Anthocyanins such as cyanidin and $cyanidin-3-O-{\beta}-D-glucoside$ (C3G) are known to elicit anti-inflammatory activities by suppressing the production of proinflammatory mediators such as tumor necrosis factor alpha and nitric oxide in LPS-stimulated macrophages. In the present study, we investigated whether cyanidin and C3G have the potential to suppress the inflammatory responses of adipose cells. Cyanidin and C3G not only suppressed the migration of RAW 264.7 macrophages induced by mesenteric adipose tissue-conditioned medium, but also inhibited the activation of the cells to produce inflammatory chemokines such as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-related protein-2 (MRP-2) in a dose-dependent manner. Cyanidin and C3G also inhibited the release of MCP-1 and MRP-2 from adipocytes and/or macrophages. These findings suggest that cyanidin and C3G may suppress the inflammatory responses of adipose tissue in obesity.

The Effects of Houttuyniae Herba on the Mast Cell-mediated Inflammatory Responses (어성초(魚腥草)가 비만세포 매개 염증반응에 미치는 영향)

  • Lee, Hee-Joe;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.2
    • /
    • pp.60-73
    • /
    • 2009
  • Objective : Houttuyniae Herba is widely used in oriental medicine as a remedy for inflammation. However, as yet there is no clear explanation of how Houttuyniae Herba affects the production of inflammatory cytokine. This study was to determine the effects of Essence extracted from Houttuynia cordata Thunb(HCT) on the mast cell-mediated inflammatory responses. Method : We measured the amount of inflammatory cytokine production induced by the phorbol myristate acetate (PMA) plus calcium ionophore(A23187) in the human mast cell line (HMC-1) incubated with various concentrations of HCT. The TNF-$\alpha$, IL-6 and IL-8 secreted protein levels were measured by the ELISA assay. The TNF-$\alpha$, IL-6 and IL-8 mRNA levels were measured by the RT-PCR analysis. Nuclear and cytoplasmic proteins were exmined by Western blot analysis. The NF-$\kappa$B promoter activity was examined by a luciferase assay. Result : HCT inhibited the PMA + A23187-induced TNF-$\alpha$, IL-6 expression and reduced mRNA of TNF-$\alpha$, IL-6 and IL-8. we observed that HCT suppressed the induction of NF-B activity. In addition, HCT suppressed PMA plus A23187-induced NF-$\kappa$B promoting activity. Conclusion : In this study, we have found that HCT is an inhibitor of NF-$\kappa$B and cytokines on the mast cell-mediated inflammatory responses.

  • PDF

The Anti-inflammatory Effect of Nypa fruticans Wurmb. Fruit on Lipopolysaccharide-induced Inflammatory response on RAW 264.7 cells (LPS로 유도한 염증반응에서 해죽순의 항염증 효과)

  • Bae, Gi-Sang;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.79-84
    • /
    • 2016
  • Objective : Nypa fruticans Wurmb. Fruit (NF) has been used as a conventional medicine to treat inflammatory peridontal diseases in Myanmar and Eastern Asia. However, the anti-inflammatory effect of NF aqueous extract on lipopolysaccharide (LPS)-induced inflammatory responses was not well-investigated. Therefore, this study was aimed to investigate the anti-inflammatory effect of NF on LPS-induced inflammatory responses on RAW 264.7 cells.Methods : To induce inflammation on the macrophage cell line, RAW 264.7 cells were treated with 500 ng/mL of LPS. Water extracts of NF was treated 1 h prior to treatment of LPS. Cell viability was measured by MTT assay. Production of nitrite was measured with Griess assay and pro-inflammatory cytokines such as interleukine (IL)-1β and IL-6, and tumor necrosis factor (TNF)-α was measured by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR). In addition, we examined the inhibitory mechanisms of NF by western blot and immunocytochemistry.Result : Water Extract from NF itself did not have any cytotoxic effect at the concentration of 200 ㎍/ml in RAW 264.7 cells. Treatment of NF inhibited the production of nitrite, and pro-inflammatory cytokines inlcuding IL-1β, IL-6 and TNF-α in a dose dependant. In addition, NF treatment inhibited the LPS-induced activation and translocation of nuclear factor (NF)-κB.Conclusion : In summary, our result suggest that treatment of NF could reduce the LPS-induced inflammatory responses via deactivation of NF-κB. This study could suggest that NF could be a beneficial drug or agent to prevent inflammation.

MiR-146 and miR-125 in the regulation of innate immunity and inflammation

  • Lee, Hye-Mi;Kim, Tae Sung;Jo, Eun-Kyeong
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.311-318
    • /
    • 2016
  • Innate immune responses are primary, relatively limited, and specific responses to numerous pathogens and toxic molecules. Protein expression involved in these innate responses must be tightly regulated at both transcriptional level and post-transcriptional level to avoid the development of excessive inflammation that can be potentially harmful to the host. MicroRNAs are small noncoding RNAs (∼22 nucleotides [nts]) that participate in the regulation of numerous physiological responses by targeting specific messenger RNAs to suppress their translation. Recent work has shown that several negative regulators of transcription including microRNAs play important roles in inhibiting the exacerbation of inflammatory responses and in the maintenance of immunological homeostasis. This emerging research area will provide new insights on how microRNAs regulate innate immune signaling. It might show that dysregulation of microRNA synthesis is associated with the pathogenesis of inflammatory and infectious diseases. In this review, we focused on miR-146 and miR-125 and described the roles these miRNAs in modulating innate immune signaling. These microRNAs can control inflammatory responses and the outcomes of pathogenic infections.

Decursinol Angelate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Modulating Type 17 Helper T Cell Responses

  • Thapa, Bikash;Pak, Seongwon;Kwon, Hyun-Joo;Lee, Keunwook
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.466-473
    • /
    • 2019
  • Angelica gigas has been used as a Korean traditional medicine for pain relief and gynecological health. Although the extracts are reported to have an anti-inflammatory property, the bioactive compounds of the herbal plant and the effect on T cell responses are unclear. In this study, we identified decursinol angelate (DA) as an immunomodulatory ingredient of A. gigas and demonstrated its suppressive effect on type 17 helper T (Th17) cell responses. Helper T cell culture experiments revealed that DA impeded the differentiation of Th17 cells and IL-17 production without affecting the survival and proliferation of CD4 T cells. By using a dextran sodium sulfate (DSS)-induced colitis model, we determined the therapeutic potential of DA for the treatment of ulcerative colitis. DA treatment attenuated the severity of colitis including a reduction in weight loss, colon shortening, and protection from colonic tissue damage induced by DSS administration. Intriguingly, Th17 cells concurrently with neutrophils in the colitis tissues were significantly decreased by the DA treatment. Overall, our experimental evidence reveals for the first time that DA is an anti-inflammatory compound to modulate inflammatory T cells, and suggests DA as a potential therapeutic agent to manage inflammatory conditions associated with Th17 cell responses.

Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways (Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과)

  • Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.481-487
    • /
    • 2007
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

Effects of Naturally Occurring Flavonoids on Inflammatory Responses and Their Action Mechanisms

  • Kim, Hyun-Pyo;Son, Kun-Ho;Chang, Hyeun-Wook;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.6 no.4
    • /
    • pp.170-178
    • /
    • 2000
  • Flavonoids are natural polyphenolic compounds widely distributed in plant kingdom. Although many flavonoids were found to show anti-inflammatory activity in vitro and in vivo, the potency of anti-inflammatory activity was not enough for a clinical trial. Thus, a search for finding potential flavonoid molecules is continuing. In this review, in vivo anti-inflammatory activity of various flavonoid derivatives is summarized mainly based on the results obtained in authors' laboratories. Among them, several biflavonoids such as amentoflavone and ginkgetin were found to possess anti-inflammatory activity on animal models of acute/chronic inflammation comparable to nonsteroidal and steroidal anti-inflammatory drugs currently used. In respect of their action mechanisms, the effects on arachidonic acid metabolism and nitric oxide production were described. Some flavonoids directly inhibit cyclooxygenase and/or lipoxygenase. Biflavones such as ochnaflavone and ginkgetin are inhibitors of phospholipase $A_2$. In recent studies, certain flavonoids were also found to suppress cyclooxygenase-2 and inducible nitric oxide synthase expression induced by inflammatory stimuli. Therefore, it is suggested that anti-inflammatory activity of the certain flavonoids (mainly flavones, flavonols and biflavonoids) may be mediated by direct inhibition of arachidonic acid metabolizing enzymes as well as suppression of the enzyme expression involved in inflammatory responses.

  • PDF