• Title/Summary/Keyword: inflammatory protein

Search Result 2,301, Processing Time 0.032 seconds

Anti-inflammatory effects of Agar free-Gelidium amansii (GA) extracts in high-fat diet-induced obese mice

  • Lee, Yunkyoung;Oh, Hyunhee;Lee, Myoungsook
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.479-485
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Gelidium amansii (GA) contains plenty of agars and various biological substances, which make them a popular functional food to control body weight in previous studies. Unlike previous studies focused on agar in GA, objectives of this study were to investigate the effects of agar-free GA extract (AfGAE) on preventive and treatment models by using diets-induced obese (DIO) C57BL/6J mice. MATERIALS/METHODS: AfGAE were used to test their effects on the prevention (Exp-1) and treatment (Exp-2) against obesity after pilot study in DIO mice. The weight changes of the body and fat tissues and protein expression related to lipid metabolism and inflammation as well as plasma lipid profile and insulin were detected. RESULTS: Although AfGAE did not prevent long-term DIO, it did increase the levels of anti-inflammatory cytokine production and lipolysis protein. We further evaluated various doses of AfGAE in preventive and treatment models. As a result, our findings suggested that an AfGAE administration as a preventive model might be a better approach to achieve its anti-inflammatory and lipolysis-promoting effects in DIO mice. CONCLUSION: Although future studies to investigate the target materials such as polyphenols in AfGAE are required, the result suggests that GA without agar might be a therapeutic tool to improve health conditions related to inflammation.

Extracts of Grifola frondosa inhibit the MAPK signaling pathways involved in keratinocyte inflammation and ameliorate atopic dermatitis

  • Eun-Ju Choi;Jin Kyeong Choi
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1056-1069
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Grifola frondosa, commonly referred to as the maitake mushroom, has been studied extensively to explore its potential health benefits. However, its anti-inflammatory effects in skin disorders have not been sufficiently elucidated. This study aimed to elucidate the anti-inflammatory role of the ethanol extract of G. frondosa in atopic dermatitis (AD) using in vivo and in vitro models. MATERIALS/METHODS: We investigated its impact on skin and spleen inflammatory responses in Dermatophagoides farinae extract (DFE)/1-chloro-2,4 dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in a mouse model. Additionally, we determined the immunosuppressive response and mechanism of G. frondosa by inducing atopic-like immune reactions in keratinocytes through tumor necrosis factor (TNF)-α/interferon (IFN)-γ stimulation. RESULTS: Our study revealed that G. frondosa ameliorates clinical symptoms in an AD-like mouse model. These effects contributed to the suppression of Th1, Th2, Th17, and Th22 immune responses in the skin and spleen, leading to protection against cutaneous inflammation. Furthermore, G. frondosa inhibited the production of antibodies immunoglobulin (Ig)E and IgG2a in the serum of AD mice. Importantly, the inhibitory effect of G. frondosa on inflammatory cytokines in TNF-α/IFN-γ-stimulated AD-like keratinocytes was associated with the suppression of MAPK (Mitogen Activated Protein Kinase) pathway activation. CONCLUSIONS: Collectively, these findings highlight the potential of G. frondosa as a novel therapeutic agent for AD treatment and prevention.

Expression of protein kinase C in the spinal cords of rats with autoimmune encephalomyelitis (뇌염모델에서 Protein Kinase C의 발현에 관한 연구)

  • Shin, Tae-Kyun;Kim, Hyung-Min;Tanuma, Naoyuki;Matsumoto, Yoh
    • Korean Journal of Veterinary Pathology
    • /
    • v.1 no.1
    • /
    • pp.26-32
    • /
    • 1997
  • Protein kinase C an enzyme of signal transduction has been known to regulate cell proliferation activation as well as apoptosis in some cancer cell lines. To explore the role of PKC in the course of cell mediated autoimmune disease such as experimental autoimmune encephalomyelitis (EAE) EAE was induced in Lewis rats(6-8 weeks old) with immunization of myelin basic protein supplemented with complete Freund's adjuvants and affected spinal cords were sampled at days 13 postimmunization(PI) as peak stage of EAE and at days 21 PI as recovery stage. The spinal cords with EAE were subjected to Northern blot analysis and insitu hybridization of PKC delta which is one of prominant isotypes of PKC in the haematopoietic cells. Northern blot analysis showed that levels of PKS delta mRNA in the spinal cords of rats withEAE was significantly increased at days 13 PI in which inflammatory cells including T cells and macrophages in the EAE lesions appeared. however the stage. By in situ hybridization signals of PKC delta in EAE lesions was intensely expressed on the delta is also expressed on some brain cells in normal rat central nervous system This finding suggests that PKC plays an important role on either activation of inflammatory cells including encephalitogenic T cells and macrophages or apoptotic elimination of some inflammatory cells depending on the stge of EAE.

  • PDF

Functional Properties of Peptides in Mixed Whey and Soybean Extracts after Fermentation by Lactic Acid Bacteria

  • Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ha-Neul Kim;Ji-Won Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.113-125
    • /
    • 2023
  • In this study, we explored the synergistic effects of whey protein concentrate (WPC) and soybean protein components after fermentation with lactic acid bacteria isolated from kimchi, and identified several peptides with desirable physiological functions, proteolysis, and immune effects. Antioxidant activity was determined using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid, 1,1-diphenyl-2-picrylhydrazyl, ferric-reducing antioxidant power, and hydroxyl radical scavenging assays, followed by cross-validation of the four antioxidant activities. These assays revealed that samples with a 8:2 and 9:1 whey to soy ratio possessed higher antioxidant activity than the control samples. Antibacterial potency testing revealed high antibacterial activity in the 9:1 and 8:2 samples. Cytotoxicity testing of samples using 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide revealed that only the 10:0, 1:9, and 0:10 samples had <80% viable cells, indicating no significant cytotoxicity. Nitric oxide (NO) assays revealed that NO expression was reduced in 8:2, 5:5, and 0:10 protein ratio fermentations, indicating low inflammatory reaction stimulatory potential. Cytokine expression was confirmed using an enzyme-linked immunosorbent assay kit. The 8:2 sample had the lowest inflammatory cytokine (interleukin [IL]-1α, IL-6, and tumor necrosis factor-α) levels compared with the lipopolysaccharide-treated group. Amino acid profiling of the 8:2 sample identified 17 amino acids. These results suggest that inoculating and fermenting Lactobacillus plantarum DK203 and Lactobacillus paracasei DK209 with an 8:2 mixture of WPC and soybean protein releases bioactive peptides with excellent anti-inflammatory and antioxidant properties, making them suitable for functional food development.

Bioactive effects of a Herbal Formula KDC16-2 Consisting Portulaca oleracea L. Extracts (마치현 추출물 함유 제제 KDC16-2의 생리 활성 효과)

  • Hur, Gayeong;Lee, Soyoung;Kim, Yeon-Yong;Jang, Hyun-Jae;Lee, Seung-Jae;Lee, Seung Woong;Choi, Jung Ho;Rho, Mun-Chual
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.1
    • /
    • pp.37-45
    • /
    • 2019
  • Portulaca oleracea L. (PL) has been used in traditional medicine herb for treatment of various diseases, such as diarrhea, dysentery, and skin inflammation. Previous studies have shown that the PL regulates the inflammation by inhibition of pro-inflammatory cytokines. Although PL might have improvement effects of intestinal function and bioactive effects, there are not enough studies to demonstrate. This study investigated the effects of KDC16-2 on the improvement of intestinal function and anti-inflammatory effects in vivo and in vitro. The improvement effect of intestinal function was measured fecal amount, water content and intestinal transit rate in KDC16-2 treated ICR mice. As results, compared with the control group, the KDC16-2 group showed a significant increase in wet fecal weight, dry fecal weight and fecal water content. The intestinal transit rate of KDC16-2 group was significantly increased. Based on the results, KDC16-2 is considered to have effects on improving intestinal function. The effect of anti-inflammatory demonstrated by using dextran sulfate sodium (DSS)-induced colitis mice. The mice were administered 3% DSS along with KDC16-2 (100, 300 mg/kg) for 14 days. DSS-induced colitis mice were significantly ameliorated in KDC16-2 treated group, including body weight loss, colon length shortening, tight junction protein of colon and histological colon injury. The levels of inflammatory mediators (IgG2a, IgA, C-reactive protein and Myeloperoxidase) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-${\alpha}$, Interleukin (IL)-6) which are involved in inflammatory responses were increased in the DSS-treated group as compared to those in the control group, and the levels were significantly decreased in the KDC16-2 groups. In addition, we investigated the impact of KDC16-2 on lipopolysaccharide (LPS)-induced inflammatory responses in J774A.1 cells. KDC16-2 inhibited production of prostaglandin E2 (PGE2) and reactive oxygen species (ROS). These results suggested that the KDC16-2 could effectively alleviate the dysfunction of intestinal and inflammatory mediators. Thus, these KDC16-2 can be potentially used as health functional food of intestinal.

Anti-inflammatory Effects of Goihwa-san Water Extract via NF-κB Inhibition (괴화산(槐花散)의 NF-κB 기전을 통한 항염증 효과 연구)

  • Hyun Hee Cho;Ji Young Choi;Min Hwangbo;Seon Young Jee
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.1
    • /
    • pp.21-39
    • /
    • 2023
  • Objectives : The purpose of this study was to investigate the anti-inflammatory effect of Goihwa-san water extract(GHS) in vitro & in vivo. Methods : In vitro, we evaluated the anti-inflammatory effect of GHS by comparing the Raw 264.7 cells with 10, 30, 100, 300㎍/㎖ of GHS for 1 hour before Lipopolysaccharide(LPS) to the single LPS treated group. We examined the relative cell viability by MTT assay and the relative level of LPS, Loxoribine(LOX), Peptidoglycan(PGN), Flagellin(FLA)-induced NO production by using Griess reagent and measured relative iNOS protein level and COX-2 protein level by using western blot and Image analyzing system. We measured the production of TNF-α, IL-1β, and IL-6 by each ELISA kits and then measured the relative levels of IκBα, p-IκBα in whole-cell lysate fraction and NF-κB in nuclear fraction by using western blot and Image analyzing system. In vivo, we induced the paw edema by subcutaneous injection of 100㎕/rat CA and measured the swelling volume of paw by using a plethysmometer and then measured the relative iNOS protein level by using western blot. Results : As a result, in vitro, LPS, PGN-induced NO production was significantly inhibited by pretreatment with GHS. GHS reduced LPS, PGN-induced iNOS expression, PGN-induced COX-2 expression and LPS-induced production of cytokine(TNF-α, IL-1β, IL-6). Expression of IκBα was increased by pretreatment with GHS 100㎍/㎖. And the expression of p-IκBα and NF-κB were decreased by pretreatment with GHS 100㎍/㎖. In vivo, CA-induced inflammation rat model was used for the evaluation of the anti-inflammatory effect of GHS. 0.3 or 1.0g/kg of GHS significantly reduced the increases of paw swelling and iNOS expression in paw tissues. Conclusions : These results show that GHS can decrease inflammatory response via inhibition of the NF-κB pathway in vitro. And in vivo, the anti-inflammatory effect suggest the clinical basis of GHS for the treatment of inflammatory diseases.

Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide (당지질로 유도한 염증반응에서 Piceatannol의 항염증 기전 연구)

  • Cho, Han-Jin;Shim, Jae-Hoon;So, Hong-Seob;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1226-1234
    • /
    • 2012
  • 3,4,3',5'-Tetrahydroxy-trans-stilbene (piceatannol) is a derivative of resveratrol with a variety of biological activities, including anti-inflammatory, anti-proliferative, and anti-cancer activities. We assessed the mechanisms by which piceatannol inhibits inflammatory responses using lipopolysaccharide (LPS)-treated Raw264.7 murine macrophages. Piceatannol (0~10 ${\mu}mol/L$) decreased LPS-induced release of nitric oxide, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and inhibited LPS-induced protein expression of inducible nitric oxide synthase (iNOS). Activation of nuclear factor-kappaB (NF-${\kappa}B$), activator protein (AP)-1, and signal transducer and activator of transcription 3 (STAT3) are crucial steps during an inflammatory response. Piceatannol prevented LPS-induced degradation of inhibitor of ${\kappa}B$ ($I{\kappa}B$), translocation of p65 to the nucleus, and phosphorylation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Additionally, piceatannol inhibited LPS-induced phosphorylation of STAT3 and IL-6-induced translocation of STAT3 to the nucleus. Furthermore, piceatannol increased the protein and mRNA levels of hemeoxygenase (HO)-1, the rate-limiting enzyme of heme catabolism that plays a critical role in mediating antioxidant and anti-inflammatory effects. Piceatannol further induced antioxidant response elements (ARE)-driven luciferase activity in Raw264.7 cells transfected with an ARE-luciferase reporter construct containing the enhancer 2 and minimal promoter region of HO-1. These results suggest that piceatannol exerts anti-inflammatory effects via the down-regulation of iNOS expression and up-regulation of HO-1 expression.

Atractylenoide II Isolated from Atractylodes macrocephala Inhibited Inflammatory Responses in Lipopolysaccharide-induced RAW264.7 Macrophages and BV2 Microglial Cells (백출에서 분리된 Atractylenolide II의 RAW264.7 대식세포와 BV2 미세아교세포에서의 항염증 효과)

  • Jin, Hong-Guang;Kim, Kwan-Woo;Li, Jing;Im, Hyeri;Lee, Dae Young;Yoon, Dahye;Jeong, Jin Tae;Kim, Geum-Soog;Oh, Hyuncheol;An, Ren-Bo;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.244-254
    • /
    • 2020
  • Atractylodes macrocephala is a perennial herb and is a member of the Compositae family. This plant is known to contain various bioactive constituents indicating anti-inflammatory, neuroprotective, anti-oxidant, immunological enhancement, and gastroprotective effects. In this investigation, we isolated four compounds with similar chemical structures from A. macrocephala, and evaluated their anti-inflammatory effects. Among the four compounds, compound 2(atractylenolide II) showed the second-best inhibitory effect on the lipopolysaccharide(LPS)-induced production of nitric oxide in RAW264.7 macrophages and BV2 microglial cells. Compound 2 also inhibited the LPS-induced the production of prostaglandin E2(PGE2), and the expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase(COX)-2 proteins in both cells. In addition, compound 2 suppressed the production of pro-inflammatory cytokines including interleukin(IL)-1β, IL-6, and tumor necrosis factor(TNF)-α. These inhibitory effects were contributed by inactivation of nuclear factor kappa B(NF-κB) and mitogen-activated protein kinases(MAPKs) pathways by treatment with compound 2. This compound did not induce the expression of heme oxygenase(HO)-1 protein indicating that the anti-inflammatory effect of compound 2 was independent with HO-1 protein. Taken together, these results suggested that atractylenolide II can be a candidate material to treat inflammatory diseases.

The Experimental Study on Antioxidant, Anti-inflammatory, Antipruritic and Antibacterial Effects of the Banchong-san (BCS) (반총산의 항산화, 항염증, 항소양증, 항균효능에 관한 실험 연구)

  • Cho, Eun-Jin;Jo, Seong-Hui;Yang, Seung-Jeong
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.3
    • /
    • pp.29-48
    • /
    • 2021
  • Objectives: Banchong-san (BCS) is a herbal formula composed of 13 korean medicinal herbs and is traditionally used to treat inflammatory diseases and pain. The object of this study was to research the antioxidant, anti-inflammatory, antipruritic and antimicrobial effects of the BCS in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: In this experiment, effects of BCS on the following four were measured as follows: (1) Anti-oxidative effects were evaluated by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) Radical scavenging activity, 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) Radical scavenging activity. (2) Anti-inflammatory effects were evaluated by the production amount of Reactive oxygen species (ROS), Nitric oxide (NO), Interleukin-1β (IL-1β), Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), Prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)(the previous two are "mRNA"), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (p38), inhibitor of nuclear factor kappa B (IκBα), nuclear factor kappa B (NF-κB) (the previous five are "Protein") in LPS-Stimulated RAW 264.7 cells. (3)Antipruritic effects were evaluated by the production amount of histamine, Leukotriene B4 (LTB4), LeukotrieneC4 (LTC4) Levels in phorbol 12-myristate 13-acetate(PMA)/ionomycin-stimulated MC/9 mast cell. (4) Anti-microbial effects were evaluated by the growth suppression of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Aspergillus niger. Results: The following results were obtained through each measurement: (1) DPPH Radical Scavenging Activity, ABTS Radical Scavenging Activity evoked a significant concentration-dependent increase. (2) ROS, NO, IL-1β, IL-6, TNF-α, PGE2 production amount, iNOS, COX-2 mRNA expression were significantly reduced in the BCS extraction group compared with the control group and significantly decreased the amount of ERK, JNK, p38, NF-κB Protein expression. The amount of IκB-α Protein Expression have increased significantly. (3) The amounts of histamine, LTB4, LTC4 were significantly decreased. (4) The antibacterial efficacy, BCS inhibited the growth of Escherichia coli, Pseudomonas aeruginosa at concentrations of 5 ㎍/ml, but did not suppress the growth of staphylococcus aureus and aspergillus niger. Conclusions: The experimental results show that BCS has anti-oxidant, anti-inflammatory, antipruritic and antimicrobial properties.

Stimulatory Effect of Staphylococcal Protein A on Inflammatory Response in Human HaCaT Keratinocytes (사람의 피부상피세포에서 황색포도상구균의 독소인자인 Staphylococcal Protein A의 염증반응 촉진효과)

  • Kwon, Hyun-Jin;Kim, Yeon-Jung;Jang, Sung-Hee;Bae, Bo-Kyoung;Youn, Hwa-Young;Lee, Hee-Woo
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.348-355
    • /
    • 2011
  • Staphylococcus aureus is a major human pathogen that is associated with various types of local and systemic infection. Staphylococcal protin A (SPA), a highly expressed surface component of S. aureus, may have a role in virulence such as activating inflammation and interfering with immune clearance. We examined the effect of recombinant SPA on inflammatory response in human HaCaT keratinocytes. The recombinant SPA protein was prepared using the pET-28a Vector System in Escherichia coli. The expression of pro-inflammatory related adhesion molecules and cytokines in HaCaT cells incubated for 6, 12, and 24 h with SPA (2 ${\mu}g$/ml) was analyzed by comparative RT-PCR or ELISA. The expression of E-selectin, ICAM-1, MCP-1, IL-6 and IL-8 was significantly increased in HaCaT from 6 to 24 h after treatment with SPA. SPA showed the effect on the adhesion-promoting ability of U937 monocytes to HaCaT cells. Our data demonstrate that SPA stimulates inflammatory response of HaCaT cells, implicating an important factor for exacerbation of skin inflammation of immunologic disease.