• Title/Summary/Keyword: inflammatory cytokines secretion

Search Result 271, Processing Time 0.031 seconds

Effect of Sodium Butyrate on Blood Glucose, Serum Lipid Profile and Inflammation in Streptozotocin-induced Diabetic Mice (스트렙토조토신으로 유도한 당뇨마우스에서 Sodium Butyrate의 혈당, 혈청 지질 성상 및 염증 억제에 미치는 영향)

  • Yun, Jung-Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.2
    • /
    • pp.171-177
    • /
    • 2015
  • Sodium butyrate is a short-chain fatty acid derivative found in foods, such as Parmesan cheese and butter and is produced by anaerobic bacteria fermentation of dietary fibers in the large intestine. There have been reports that butyrate prevented obesity, protected insulin sensitivity, and ameliorated dyslipidemia in dietary obese mice. This study investigated the effects of sodium butyrate on fasting blood glucose level and serum lipid profile in streptozotocin(STZ)-induced diabetic mice. Male C57BL/6 mice were fed AIN-93G for four weeks prior to intraperitoneal injections with STZ (100 mg/kg body weight). Diabetic mice had supplements of 5% sodium butyrate for four weeks. The 5% sodium butyrate diet significantly improved fasting blood glucose level and lipid profile in STZ-induced diabetic mice. Inflammation has been recognized to decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can directly affect beta cell function, leading to secretory dysfunction and increased apoptosis. Thus, anti-inflammatory therapies represented a potential approach for the therapy of diabetes and its complications. In this animal study, the 5% sodium butyrate supplementation also inhibited inflammatory cytokine production in STZ-induced diabetic mice. These results suggested that sodium butyrate can be a potential candidate for the prevention of diabetes and its complications.

NLRP3 Inflammasome in Neuroinflammatory Disorders (NLRP3 인플라마좀 작용 기전 및 신경 질환에서의 역할)

  • Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.237-247
    • /
    • 2021
  • Immune responses in the central nervous system (CNS) function as the host's defense system against pathogens and usually help with repair and regeneration. However, chronic and exaggerated neuroinflammation is detrimental and may create neuronal damage in many cases. The NOD-, LRR-, and pyrin domain―containing 3 (NLRP3) inflammasome, a kind of NOD-like receptor, is a cytosolic multiprotein complex that consists of sensors (NLRP3), adaptors (apoptosis-associated speck like protein containing a caspase recruitment domain, ASC) and effectors (caspase 1). It can detect a broad range of microbial pathogens along with foreign and host-derived danger signals, resulting in the assembly and activation of the NLRP3 inflammasome. Upon activation, NLRP3 inflammasome leads to caspase 1-dependent secretion of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. NLRP3 inflammasome is highly expressed in CNS-resident cell types, including microglia and astrocytes, and growing evidence suggests that NLRP3 inflammasome is a crucial player in the pathophysiology of several neuroinflammatory and psychiatric diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, traumatic brain injury, amyotrophic lateral sclerosis, and major depressive disorder. Thus, this review describes the molecular mechanisms of NLRP3 inflammasome activation and its crucial roles in the pathogenesis of neurological disorders.

Anti-neuroinflammatory effects of cultivated red ginseng with fermented complex mushroom-cereal mycelium on lipopolysaccharide activated BV2 microglial cells (LPS로 인해 활성화된 BV2 Microglia에서 발효 복합버섯-곡물 숙성균주 배양 홍삼(紅蔘)의 뇌신경염증 보호효과)

  • Bitna, Kweon;Jin-Young, Oh;Dong-Uk, Kim;Mi-Kyung, Jang;Jun-Hyoung, Cho;Sung-Joo, Park;Gi-Sang, Bae
    • The Korea Journal of Herbology
    • /
    • v.38 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Objectives : Neuroinflammation is a common pathological mechanism of neurodegenerative diseases, and the development of therapeutic agents is urgently needed. Red ginseng has been known to be good for the immune stimulation in Eastern Asia. Although the immuno-stimulatory activity of red ginseng are already known, the neuro-protective effects of cultivated red ginseng with fermented complex mushroom-cereal mycelium (RGFM) have not been conducted. Thus, in this study, we tried to investigate the anti-neuroinflammatory effect of RGFM water extract on lipopolysaccharide (LPS) stimulated BV2 cells. Methods : BV2 cells were pretreated with RGFM 1 h prior to LPS exposure. To determine the neuro-protective effects of RGFM water extract, we measured the expression of inflammatory mediators including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and nitric oxide (NO) and pro-inflammatory cytokines such as interleukin (IL)-1𝛽, IL-6 and tumor necrosis factor (TNF)-𝛼 in LPS-stimulated BV2 cells. In addition, to find out the regulatory mechanism of RGFM water extract, we assessed the protein levels of mitogen-activated protein kinases (MAPKs) and inhibitory 𝜅B𝛼 (I𝜅B𝛼) by western blotting. Results : In our study, treatment of RGFM reduced the mRNA expression of iNOS and COX-2 and suppressed NO production in LPS-stimulated BV2 cells. Additionally, the secretion of IL-1𝛽 and TNF-𝛼 but not IL-6 was significantly inhibited by RGFM. Furthermore, RGFM water extract inhibited the phosphorylation of c-Jun N-terminal kinase (JNK). Conclusions : Taken together, these findings suggest that RGFM water extract has a protective effect on neuroinflammation through inhibition of JNK.

Recent Research Trends in Induction of Cellular Senescence by Microplastics (미세플라스틱에 의한 세포 노화 유도의 최근 연구 동향)

  • Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.34 no.8
    • /
    • pp.594-607
    • /
    • 2024
  • Plastic products have long been widely used in both industrial and household applications. However, tiny plastic particles derived from plastic products, such as microplastics (MPs) and nanoplastics (NPs), can infiltrate the human body through inhalation, ingestion, or skin contact. Once inside cells via endocytosis, MPs and NPs (MNPs) can trigger autophagy, but lysosomal dysfunction can block autophagic flux. Accumulating in the cytoplasm, these particles induce cellular stress, including oxidative stress from free radicals, mitochondrial dysfunction, and increased inflammatory response. Meanwhile, cellular senescence is a hallmark of aging and is defined as the stable termination of the cell cycle in response to cell damage and stress. In particular, the accumulation of oxidative stress, a key factor in inducing cellular senescence, induces the expression of major senescence markers. Senescent cells increase the secretion of senescence-associated secretory phenotype, including inflammatory cytokines and chemokines. Despite growing interest in how MNPs induce cellular senescence, there remains a gap regarding their onset and therapeutic targets. Therefore, this review focuses on identifying recent research trends on how MNPs induce cellular aging in key human cell types and proposes future research directions to overcome these challenges.

Socheongja and Socheong 2 Extracts Suppress Lipopolysaccharide-induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages through Activating Nrf2/HO-1 Signaling and Suppressing MAPKs Pathway (RAW 264.7 대식세포에서 Nrf2/HO-1 신호 전달계 활성화와 MAPKs 경로 억제를 통한 소청자와 소청2호의 LPS 매개 염증성 및 산화적 스트레스 반응의 억제)

  • Kwon, Da Hye;Choi, Eun Ok;Hwang, Hye-Jin;Kim, Kook Jin;Hong, Su Hyun;Lee, Dong Hee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • Inflammatory response and oxidative stress play critical roles in the development and progression of many human diseases. Therefore, a great deal of attention has been focused on finding functional materials that can control inflammation and oxidative stress simultaneously. The purpose of this study was to investigate the effects of Socheongja and Socheong 2, Korean black seed coat soybean varieties, on the inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Our data indicated that the extracts of Socheongja (SCJ) and Socheong 2 (SC2) significantly suppressed LPS-induced production of nitrite oxide (NO) and prostaglandin $E_2$, key pro-inflammatory mediators, by suppressing the expression of inducible NO synthase and cyclooxygenase-2. It was also found that SCJ and SC2 reduced the LPS-induced secretion of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$, which was concomitant with a decrease in the protein levels. In addition, SCJ and SC2 markedly diminished LPS-stimulated intracellular reactive oxygen species accumulation, and effectively enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1 expression. Furthermore, LPS-induced activation of mitogen-activated protein kinases (MAPKs) was abrogated by SCJ and SC2. Taken together, these data suggest that SCJ and SC2 may offer protective roles against LPS-induced inflammatory and oxidative responses in RAW 264.7 macrophages through attenuating MAPKs pathway, and these effects are mediated, at least in part, through activating Nrf2/HO-1 pathway. Given these results, we propose that SCJ and SC2 have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by over-activation of macrophages.

Anti-Inflammatory Effect of Wheat Germ Oil on Lipopolysaccharide-stimulated RAW 264.7 Cells and Mouse Ear Edema (LPS로 유도한 RAW 264.7 세포 및 귀부종 동물 모델에 대한 밀배아유의 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Min-Ji;Jeong, Da-Hyun;Kim, Koth-Bong-Woo-Ri;Bae, Nan-Young;Park, Ji-Hye;Park, Sun-Hee;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.236-245
    • /
    • 2016
  • This study investigated the anti-inflammatory effects of wheat germ oil (WGO) on RAW 264.7 cells. It was shown that WGO had no cytotoxicity against the treated cells or negative effect on their proliferation. WGO suppressed nitric oxide (NO) secretion considerably and had inhibitory effects on the production of LPS-induced NO and pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β). In particular, the IL-6 and TNF-α inhibition activities were over 90% at 100 μg/ml concentration of the oil. WGO also inhibited the LPS-induced expression of cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-kappa B (NF-κB), and reduced the expression of phosphorylated ERK and JNK. Moreover, the croton-oil-induced edema in mouse ears was reduced by WGO, and no mortalities occurred in mice administered 5,000 mg/kg body weight of WGO over a 2-week observation period. In conclusion, these results provide evidence for the anti-inflammatory effect of WGO that likely occurs via modulation of NF-κB and the JNK/ERK MAPK signaling pathway.

Anti-inflammation effect of rebaudioside A by inhibition of the MAPK and NF-κB signal pathway in RAW264.7 macrophage (RAW264.7 대식세포에서 MAPK 및 NF-κB 신호전달 억제를 통한 rebaudioside A의 항염 효과)

  • Choi, Da Hee;Cho, Uk Min;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.205-211
    • /
    • 2018
  • Rebaudioside A is a natural sweetener isolated from Stevia rebaudiana Bertoni, one of the glycosides based on steviol. Recent studies have shown that rebaudioside A inhibits the inflammatory response by inhibiting cytokines secretion such as interleukin-$1{\alpha}/1{\beta}$ in activated RAW264.7 mouse macrophage cells by LPS. However, the inhibitory mechanism of inflammation by rebaudioside A in the presence of LPS has not been fully elucidated. Therefore, in this study, we tried to investigate the anti-inflammatory activity of rebaudioside A at the protein level when RAW264.7 cells were stimulated by LPS. The inducible nitric oxide synthase protein expression level was reduced in the group treated with $250{\mu}M$ rebaudioside A compared to the LPS-treated group. In addition, the mRNA expression level of $NF-{\kappa}B$, which is a representative nuclear transcription factor by inflammatory signal, was also decreased as compared with that of LPS-treated group. In addition, $NF-{\kappa}B$ and inhibitor-${\kappa}B$ ($I-{\kappa}B$) complexes that are known to be dissociated by $I-{\kappa}B$ phosphorylation and ubiquitination were less phosphorylated than LPS treated group in the presence rebaudioside A. Finally, we could find that rebaudioside A was involved in the $NF-{\kappa}B$ pathway through reducing extracellular signal-regulated kinase1/2 phosphorylation in a concentration-dependent manner. These results suggest that rebaudioside A might suppress inflammatory reaction through MAPK and $NF-{\kappa}B$ regulation in LPS-stimulated RAW264.7.

Composition Comprising the Extract of Salicis Radicis Cortex for Immune Activity (유근피 추출물을 함유하는 면역증강용 조성물)

  • Park, Gil-Soon;Chang, In-Ae;Kim, Youn-Chul;Lee, Moo-Hyung;Shin, Hye-Young;Choi, Du-Young;Park, Hyun;Yun, Yong-Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.209-213
    • /
    • 2007
  • In the recent, increased concern has been focused on the pharmacology and clinical utility of herbal extracts and derivatives as a drug or adjunct to chemotherapy and immunotherapy. Salicis Radicis Cortex, A decoction has been mainly used for improvement of ozena and a diuretic effect in oriental medicine, but there was no study on the molecular mechanism of Salicis Radicis Cortex as an immunomodulator. Here we investigated the role of the aqueous extract of Salicis Radicis Cortex in the expression of inflammatory mediators, surface molecule, and related receptors in vitro and in vivo. In murine macrophage RAW 264.7 cells and peritoneal macrophages of C57BL/6N mice, water extract of Salicis Radicis Cortex increased the production of secretary TNF-alpha and Nitric oxide, and the expression level of CD14, LPS co-receptor and CD86, co-stimulatory molecule compared to negative natural extract ex vivo. Moreover, i.p. injection of water extract of Salicis Radicis Cortex significantly increased the secretion level of IFN-gamma and TNF-alpha, IL-2, IL-4 and IL-5 in serum of mice in vivo. Taken together, these results suggest that Salicis Radicis Cortex may regulate the immune response by secreting Th1 and Th2 types of cytokines in vivo and the possibility of its as natural immunostimulator.

Sodium butyrate has context-dependent actions on dipeptidyl peptidase-4 and other metabolic parameters

  • Lee, Eun-Sol;Lee, Dong-Sung;Pandeya, Prakash Raj;Kim, Youn-Chul;Kang, Dae-Gil;Lee, Ho-Sub;Oh, Byung-Chul;Lee, Dae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.519-529
    • /
    • 2017
  • Sodium butyrate (SB) has various metabolic actions. However, its effect on dipeptidyl peptidase 4 (DPP-4) needs to be studied further. We aimed to evaluate the metabolic actions of SB, considering its physiologically relevant concentration. We evaluated the effect of SB on regulation of DPP-4 and its other metabolic actions, both in vitro (HepG2 cells and mouse mesangial cells) and in vivo (high fat diet [HFD]-induced obese mice). Ten-week HFD-induced obese C57BL/6J mice were subjected to SB treatment by adding SB to HFD which was maintained for an additional 16 weeks. In HepG2 cells, SB suppressed DPP-4 activity and expression at sub-molar concentrations, whereas it increased DPP-4 activity at a concentration of $1,000{\mu}M$. In HFD-induced obese mice, SB decreased blood glucose, serum levels of insulin and $IL-1{\beta}$, and DPP-4 activity, and suppressed the increase in body weight. On the contrary, various tissues including liver, kidney, and peripheral blood cells showed variable responses of DPP-4 to SB. Especially in the kidney, although DPP-4 activity was decreased by SB in HFD-induced obese mice, it caused an increase in mRNA expression of $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$. The pro-inflammatory actions of SB in the kidney of HFD-induced obese mice were recapitulated by cultured mesangial cell experiments, in which SB stimulated the secretion of several cytokines from cells. Our results showed that SB has differential actions according to its treatment dose and the type of cells and tissues. Thus, further studies are required to evaluate its therapeutic relevance in metabolic diseases including diabetes and obesity.

Effect of Triacsin C on LPS-induced Inflammation in 3T3-L1 Adipocytes (LPS에 의해 유도된 3T3-L1 지방세포의 염증반응에 대한 Triacsin C의 효과)

  • Park, Eun-Ju;Spurlock, Michael
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.2
    • /
    • pp.283-288
    • /
    • 2012
  • Triacsin C, an inhibitor of acyl-CoA synthetase, is known to have antiatherosclerotic and vasodilatory activities. The aims of this study were to evaluate the effects of triacsin C on endotoxin-induced (lipopolysaccharide, LPS) inflammation in 3T3-L1 adipocytes and also to evaluate its synergistic effect with triacsin C and resveratrol, a potent antiinflammatory agent. Exposure to LPS for 18 hr increased secretion of IL-6 into the culture medium and mRNA expression of IL-6, MCP-1, TLR and iNOS. Pretreatment of triacsin C for 2 hr suppressed IL-6 accumulation in the medium and the induction of IL-6 expression by LPS, which was more effective than resveratrol treatment. The synergistic effect of triacsin C and resveratrol was found to reduce the expression of iNOS by LPS. However, neither triacsin C nor resveratrol affected the LPS-induced expression of MCP-1, TLR or iNOS. These findings indicate that triacsin C may be a local regulator of inflammation in the adipocyte, although detailed mechanisms are needed to elucidate this through further research.