• Title/Summary/Keyword: inflammation mediators

Search Result 511, Processing Time 0.03 seconds

Analysis of chemical mediators and cytokines in allergic inflammation models in rats and their advantages for the screening of anti-allergic inflammatory drugs

  • Ohuchi, Kazuo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.11-18
    • /
    • 1996
  • We have established an air pouch-type allergic inflammation model in rats [1,2] and a peritoneal eosinophilia model in rats [3]. Employing the two models, chemical mediators and cytokines responsible for the development of inflammation induced by at allergic mechanisms are investigated to clarify the usefulness of the two models for the screening of anti-allergic inflammatory drugs.

  • PDF

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.

Current and Future Molecular Mechanism in Inflammation and Arthritis

  • Sharma, Vikash;Tiwari, Raj Kumar;Shukla, Shiv Shankar;Pandey, Ravindra Kumar
    • Journal of Pharmacopuncture
    • /
    • v.23 no.2
    • /
    • pp.54-61
    • /
    • 2020
  • Inflammation is an immune response of the human body but excessive inflammation is taken as a major factor in the development of many diseases including autoimmune disorders, cancer and nerve disorders etc. In this regards the need is to suppress the inflammatory response. Suppression of extra or imperfect inflammatory response is not a big deal provided there is an exact knowledge of particular target in the body. Recent advancements in Pharmacological aspect made the therapy with improved outcomes in number of patients. Anticytokine therapy might be one of the important and novel approaches for inflammation and Arthritis. This can be achieved only when we go through the pathophysiology of expression and identification of mediators. Let's take an example of cytokine like interleukins (IL), chemokines, interferons (INF), tumor necrosis factors (TNF-α), growth factors, and colony stimulating factors) release pathway which is a major signalling protein in inflammatory response. In the present study we have reviewed the recent pharmacological therapeutic advancement, inflammatory mediators, receptors, and major signalling pathways. Such information will not only provide the idea about the mechanism of action of Pharmaceuticals and molecular targets but also it provides a new aspect for drug designing and new corrective approaches in existing clinical medicines. This study will be a source of good information for the researchers working in the area of drug designing and molecular Pharmacology especially in anti-inflammatory and anti arthritic medicines for target based therapy.

Specialized Proresolving Mediators for Therapeutic Interventions Targeting Metabolic and Inflammatory Disorders

  • Han, Yong-Hyun;Lee, Kyeongjin;Saha, Abhirup;Han, Juhyeong;Choi, Haena;Noh, Minsoo;Lee, Yun-Hee;Lee, Mi-Ock
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.455-464
    • /
    • 2021
  • Uncontrolled inflammation is considered the pathophysiological basis of many prevalent metabolic disorders, such as nonalcoholic fatty liver disease, diabetes, obesity, and neurodegenerative diseases. The inflammatory response is a self-limiting process that produces a superfamily of chemical mediators, called specialized proresolving mediators (SPMs). SPMs include the ω-3-derived family of molecules, such as resolvins, protectins, and maresins, as well as arachidonic acid-derived (ω-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, and alleviation of pain and promote tissue regeneration via novel mechanisms. SPMs function by binding and activating G protein-coupled receptors, such as FPR2/ALX, GPR32, and ERV1, and nuclear orphan receptors, such as RORα. Recently, several studies reported that SPMs have the potential to attenuate lipid metabolism disorders. However, the understanding of pharmacological aspects of SPMs, including tissue-specific biosynthesis, and specific SPM receptors and signaling pathways, is currently limited. Here, we summarize recent advances in the role of SPMs in resolution of inflammatory diseases with metabolic disorders, such as nonalcoholic fatty liver disease and obesity, obtained from preclinical animal studies. In addition, the known SPM receptors and their intracellular signaling are reviewed as targets of resolution of inflammation, and the currently available information on the therapeutic effects of major SPMs for metabolic disorders is summarized.

Bamboo Culm Extract Attenuates Early Development of Systemic Inflammation in Pristane-Primed Lupus Mice

  • Chae, Byeong-Suk
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.271-279
    • /
    • 2010
  • Systemic lupus erythematosus (SLE) is characterized by systemic inflammation through production of inflammatory mediators and signaling abnormalities between T- and B- cells, leading to autoantibody production and multiorgan injuries. This study was investigated whether bamboo culm extract (BC) attenuates development of lupus systemic inflammation in the early stage in pristane-induced lupus mice. The pristane-induced lupus mice were administrated with BC 0.5 ml/kg or PBS and healthy mice with PBS orally once a day for 14 days. Our results showed that BC remarkably attenuated levels of serum TNF-$\alpha$, IL-6, IL-10, IFN-$\gamma$, $PGE_2$, and VEGF, production of macrophages IL-6 and $PGE_2$ and expression of macrophages IL-6 and COX-2 mRNA in the presence or absence of LPS in pristane-induced lupus mice. Also, BC remarkably reduced expression of CD40L on the splenic T cells and CD80 on the splenic B cells and upregulated the reduced apoptosis of splenic T cells and CD4+ T cells in pristane-induced lupus mice. Therefore, these findings suggest that BC may attenuate early development of lupus systemic inflammation via downregulation of inflammatory mediators and amelioration of abnormal signaling between T cells and B cells.

Inhibitory effect of epigallocatechin from Camellia sinensis leaves against pro-inflammatory mediator release in macrophages

  • Cho, Jun-Hyo;Hong, Eun-Jin;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • To investigate the anti-inflammatory activity of natural products, we determined the anti-inflammatory activity of purified epigallocatechin (EGC) from Camellia sinensis leaves. In the present study, we found that EGC inhibited the production of proinflammatory mediators (IL-6, TNF-${\alpha}$, NO, and $PGE_2$) in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. Suppression of IL-6 seems to be at least partly attributable to the inhibitory effect of EGC. TNF-${\alpha}$ is a major cytokine produced by LPS-induced macrophages, and they have a wide variety of biological functions including regulation of inflammation. The inhibition of IL-6 and TNF-${\alpha}$ production by EGC may downregulate the acute-phase response to LPS, thereby reducing LPS-induced inflammation. In addition to IL-6 and TNF-${\alpha}$, EGC effectively reduced the production of other key inflammatory mediators, including NO and $PGE_2$. The inhibitory effect of EGC on NO and $PGE_2$ production was supported by the suppression of inducible nitric oxide synthase and COX-2 at protein levels. These results support the traditional use of EGC in the alleviation of various inflammation-associated diseases and suggest that EGC might be useful in the development of new functional foods for inflammatory diseases.

Protective effect of Phellodendri Cortex against lipopolysaccharide-induced memory impairment in rats

  • Lee, Bom-Bi;Sur, Bong-Jun;Cho, Se-Hyung;Yeom, Mi-Jung;Shim, In-Sop;Lee, Hye-Jung;Hahm, Dae-Hyun
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.302-312
    • /
    • 2012
  • The purpose of this study was to examine whether Phellodendri Cortex extract (PCE) could improve learning and memory impairments caused by lipopolysaccharide (LPS)-induced inflammation in the rat brain. The effect of PCE on modulating pro-inflammatory mediators in the hippocampus and its underlying mechanism were investigated. Injection of LPS into the lateral ventricle caused acute regional inflammation and subsequent deficits in spatial learning ability in the rats. Daily administration of PCE (50, 100, and 200 mg/kg, i.p.) for 21 days markedly improved the LPS-induced learning and memory disabilities in the Morris water maze and passive avoidance test. PCE administration significantly decreased the expression of pro-inflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$, and cyclooxygenase-2 mRNA in the hippocampus, as assessed by RT-PCR analysis and immunohistochemistry. Together, these findings suggest that PCE significantly attenuated LPS-induced spatial cognitive impairment through inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggested that PCE may be effective in preventing or slowing the development of neurological disorders, including Alzheimer's disease, by improving cognitive and memory function because of its anti-inflammation activity in the brain.

Anti-inflammatory effects of DA-9601, an extract of Artemisia asiatica, on aceclofenac-induced acute enteritis

  • Kim, Ju Hwan;Shin, Chang Yell;Jang, Sun Woo;Kim, Dong-Seok;Lee, Wonae;Kim, Hyung-Gun;Kim, Hak Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.439-448
    • /
    • 2021
  • DA-9601 is an extract obtained from Artemisia asiatica, which has been reported to have anti-inflammatory effects on gastrointestinal lesions; however, its possible anti-inflammatory effects on the small intestine have not been studied yet. Therefore, in this study, we investigated the protective effects of DA-9601 against the ACF-induced small intestinal inflammation. Inflammation of the small intestine was confirmed by histological studies and the changes in the CD4+ T cell fraction induced by the inflammation-related cytokines, and the inflammatory reactions were analyzed. Multifocal discrete small necrotic ulcers with intervening normal mucosa were frequently observed after treatment with ACF. The expression of IL-6, IL-17, and TNF-α genes was increased in the ACF group; however, it was found to have been significantly decreased in the DA-9601 treated group. In addition, DA-9601 significantly decreased the levels of proinflammatory mediators such as IL-1β, GM-CSF, IFN-γ, and TNF-α; the anti-inflammatory cytokine IL-10, on the other hand, was observed to have increased. It is known that inflammatory mediators related to T cell imbalance and dysfunction continuously activate the inflammatory response, causing chronic tissue damage. The fractions of IFN-γ+ Th1 cells, IL-4+ Th2 cells, IL-9+ Th9 cells, IL-17+ Th17 cells, and Foxp3+ Treg cells were significantly decreased upon DA-9601 treatment. These data suggest that the inflammatory response induced by ACF is reduced by DA-9601 via lowering of the expression of genes encoding the inflammatory cytokines and the concentration of inflammatory mediators. Furthermore, DA-9601 inhibited the acute inflammatory response mediated by T cells, resulting in an improvement in ACF-induced enteritis.

Synergic Effect of Quercetin and Astragalin from Mulberry Leaves on Ani-inflammation (상엽 유래 퀘세틴과 아스트라갈린의 항염증에 대한 상승효과)

  • Mok, Ji-Ye;Jeong, Seung-Il;Kim, Jang-Ho;Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.830-836
    • /
    • 2011
  • The leaf of mulberry (Morus alba L) has long been used in Oriental medicine for the prevention or treatment of several diseases. However, little is known about the inhibitory effects of a single compound isolated from the mulberry leaves on inflammatory response. We are isolate a single compound of quercetin (3,3',4',5,7-pentahydroxyflavone) and astragalin (kaempferol-3-O-glucopyranoside) from the mulberry leaves, and then investigate the anti-inflammatory effects of quercetin, astragalin or quercetin plus astragalin in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. Each compound suppressed the production of inflammatory mediators (NO, $PGE_2$ and IL-6) in LPS-stimulated murine peritoneal macrophages in a dose-dependent manner. Especially, the cotreatment of quercetin (2.5 ${\mu}M$) and astragalin (2.5 ${\mu}M$) markedly suppressed the production and the expression of inflammatory mediators. These suppressive effects were synergistically increased by their combination. These results suggest that the combination of quercetin and astragalin from the mulberry leaves may be useful for therapeutic drugs against inflammatory immune diseases, probably by suppressing the production of inflammatory mediators.

Phytoceramide Alleviates the Carrageenan/Kaolin-Induced Arthritic Symptoms by Modulation of Inflammation

  • Bongjun Sur;Mijin Kim; Thea Villa;Seikwan Oh
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.536-543
    • /
    • 2023
  • Phytoceramide (Pcer) is found mainly in plants and yeast. It can be neuroprotective and immunostimulatory on various cell types. In this study, the therapeutic effect of Pcer was explored using the carrageenan/kaolin (C/K)-induced arthritis rat model and fibroblast-like synoviocytes (FLS). Pcer treatment (1, 10, and 30 mg/kg/day) were given to the arthritic rats for 6 days after disease induction. Weight distribution ration (WDR), knee thickness, squeaking score, serum levels of proinflammatory mediators, and histological analysis were measured and performed to evaluate arthritic symptoms in the rat model. In interleukin (IL)-1β-stimulated FLS, proinflammatory mediators were measured after Pcer (1-30 µM) treatment. Arthritic symptoms in rats with Pcer treatment were significantly decreased at days 4 to 6 after C/K arthritis induction. Inflammation in the knee joints were also significantly decreased in rats with Pcer treatment. Furthermore, in IL-1β-stimulated FLS, the expressions of proinflammatory mediators were also inhibited by Pcer. As shown by the results, Pcer has anti-arthritic effects in the C/K rat model and in synovial cells, suggesting that Pcer has the potential to be a useful agent in arthritis treatment.