• Title/Summary/Keyword: infinite slope stability model

Search Result 30, Processing Time 0.026 seconds

Probabilistic Stability Analysis of Unsaturated Soil Slope under Rainfall Infiltration (강우침투에 대한 불포화 토사사면의 확률론적 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.37-51
    • /
    • 2018
  • The slope failure due to the rainfall infiltration occurs frequently in Korea, since the depth of the weathered residual soil layer is shallow in mountainous region. Depth of the failure surface is shallow and tends to pass near the interface between impermeable bedrock and soil layer. Soil parameters that have a significant impact on the instability of unsaturated slopes due to rainfall infiltration inevitably include large uncertainties. Therefore, this study proposes a probabilistic analysis procedure by Monte Carlo Simulation which considers the hydraulic characteristics and strength characteristics of soil as random variables in order to predict slope failure due to rainfall infiltration. The Green-Ampt infiltration model was modified to reflect the boundary conditions on the slope surface according to the rainfall intensity and the boundary condition of the shallow impermeable bedrock was introduced to predict the stability of unsaturated soil slope with shallow bedrock under constant rainfall intensity. The results of infiltration analysis were used as inputs of infinite slope analysis to calculate the safety factor. The proposed analysis method can be used to calculate the time-dependent failure probability of soil slope due to rainfall infiltration.

A Study on the Infinite Slope Safty Factor Applied to the Roots Cohesion (뿌리 점착력을 적용한 무한사면 안전률에 관한 연구)

  • Choi, Won-Il;Choi, Eun-Hwa;Suh, Jin-Won;Jeon, Seong-Kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.13-24
    • /
    • 2016
  • The safety factor of an infinite slope tends to be analyzed as lower when the effects of root cohesion are not considered into the equation. Thus, it is essential to consider regional characteristics such as root cohesion and crown density in order to obtain a reasonable safety factor value. In this study, The safety factor of the landslide model, both before and after considering crown density and root cohesion, was calculated and a comparative analysis was carried out. The safety factor is increased by the effect of roots cohesion of the analysis results, the amount of increase in safety factor along the inclination of the slope angle has been analyzed with various things, the effect of reinforcing the roots cohesion, slope of the lower angle it was found that the higher the safety factor increase.

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 2. Rainfall Event-based Analysis (유역 내에서의 산사태에 의한 토사발생특성 분석 2. 강우사상별 분석)

  • Yoo, Chul-Sang;Kim, Kee-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. The results of the analysis on characteristics of sediment produce according to rainfall events showed that the sediment produce by landslide was mainly contributed to rainfall intensity and its temporal clustering. The results of the analysis on characteristics of sediment produce by extreme events showed that remaining rainfall amount of typhoon 'Rusa' was much more than that of the other extreme events, and thus this remaining rainfall was to contribute to sediment transportation. Additionally, only a small number of extreme events were found to cause most amount of sediment produce in a basin.

A Proposal for Risk Evaluation Method of Slope Failure due to Rainfalls (강우 시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, Jong-Gil;Jung, Min-Su;Tori, Nobuyaki;Okimura, Takashi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.893-903
    • /
    • 2008
  • A method for predicting surface failures which occur during heavy rainfall on mountain slopes is proposed by using the digital land form model that is obtained by reading altitude on a topographical map at 10m grid point space. A depth of a potential failure layer is assumed at each grid point. In the layer, an infiltrated water movement from cell to cell is modeled in the study (cell is a square of the grid). Infiltrated ground water levels which show the three dimensional effects of a topographical factor in an area can be hourly calculated at every cell by the model. The safety factor of every cell is also calculated every hour by the infinite slope stability analysis method with the obtained infiltrated ground water level. Failure potential delineation is defined here as the time when the safety factor becomes less than unity under the assumptions that effective rainfall is 20mm/h and continues 20 hours.

  • PDF

Parametric Studies of Slope stability Analysis by 3D FEM Using Strength Reduction Method (강도감소법에 의한 3차원 사면안정해석에 대한 매개변수 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The two-dimensional (2D) analysis is widely used in geotechnical engineering for slope stability analysis assuming a plane-strain condition. It is implicitly assumed that the slip surface is infinitely wide, and thus three-dimensional (3D) end effects are negligible because of the infinite width of the slide mass. The majority of work on this subject suggests that the 2D factor of safety is conservative (i.e. lower than the 'true' 3D factor of safety). Recently, the 3D finite element method (FEM) became more attractive due to the progress of computational tools including the computer hardware and software. This paper presents the numerical analyses on rotational mode and translational mode slopes using the 2D and 3D FEM as well as 2D limit equilibrium methods (LEM). The results of the parametric study on the slope stability due to mesh size, dilatency angle, boundary conditions, stress history and model dimensions change are analysed. The analysis showed that the factor of safety in 3D analysis is always higher than that in the 2D analysis and the discrepancy of the slope width in W direction on the factor of safety is ignored if the roller type of W direction conditions is applied.

Analysis of the Effect of Tree Roots on Soil Reinforcement Considering Its Spatial Distribution (뿌리의 공간분포를 고려한 수목 뿌리의 토양보강 효과에 대한 분석)

  • Kim, Dongyeob;Lee, Sang Ho;Im, Sangjun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.4
    • /
    • pp.41-54
    • /
    • 2011
  • Tree roots can enhance soil shear strength and slope stability. However, there has been a limited study about root reinforcement of major tree species in Korea because of some experimental difficulties. Thus, this study was conducted to analyze the performance of Japanese larch (Larix kaempferi) and Korean pine (Pinus koraiensis) which are two common plantation species in Korea. Profile wall method was used to measure the spatial distribution of root system and its diameter within 15 soil walls of Japanese larch stand and 13 soil walls of Korean pine stand in Taehwa University Forest, Seoul National University, Korea. Root tensile properties of each species were assessed in the laboratory, and root reinforcements were estimated by Wu model. The study observed that the number and cross-sectional area (CSA) of root in both species could tend to decrease with soil depth. Especially, CSA were well-fitted to exponential functions of soil depth. Mean root area ratios (RAR) were 0.03% and 0.10% for Japanese larch and Korean pine, respectively. Estimated root reinforcement from Wu model were, on the average, 4.04 kPa for Japanese larch and 12.26 kPa for Korean pine. Overall, it was concluded that root reinforcement increased the factor of safety (Fs) of slope for small-scale landslide as the result of two-dimensional (2-D) infinite slope stability analysis considering vegetation effects.

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 1. Simulation of Sediment Produce and its Verification (유역 내에서의 산사태에 의한 토사발생특성 분석 1. 토사발생모의 및 검증)

  • Yoo, Chul-Sang;Kim, Kee-Wook;Kim, Seong-Joon;Lee, Mi-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.133-145
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. As the results considering on recovery of the failed slopes, much amount of sediment was produced in 1963, 1970, and 2002. As the results of verification of simulation results using Landsat 5 TM images, we can find differences of landslide location between the results from model and satellite images. These differences can be caused by uncertainties of the rough parameters in the model. However, in the case that Obong-dam basin was divided into two subbasin, Wangsan-chun and Doma-chun basin, the results of each subbasin show errors around 20%. And only 4% of error occurred in the case of comparing landslide area on the entire Obong-dam basin. These errors seem insignificant considering on the errors which can be caused from the analyses in this study such as estimation of sediment produce, soil cover classification, and estimation of landslide area.

Analysis on Mt. Umyeon Landslide Using Infinite Slope Stability Model (무한사면안정해석모형을 이용한 우면산 산사태 분석)

  • Lee, Gi-Ha;Oh, Sung-Ryul;Lee, Dae-Up;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.737-741
    • /
    • 2012
  • 본 연구에서는 2011년 7월 27일 집중호우로 인한 서울시 우면산 산사태 지역을 대상으로 뿌리의 보강효과와 분포형 습윤지수를 고려한 GIS기반의 무한사면안 해석기법을 이용하여 사면안정해석을 실시하였다. 사면안정해석을 위한 지형 지질학적 매개변수는 수치지도, 정밀토양도 및 임상도(임상도와 영급도)로부터 추출하여 $10m{\times}10m$ 해상도의 공간분 포형 데이터베이스로 변환하였다. 또한, 분포형 습윤지수의 산정을 위한 비집수면적(specific catchment area)은 무한방향흐름 기법(IFD, infinity flow direction)을 이용하여 결정하였으며, 모형의 입력 강우자료는 서울시 서초와 남현 AWS의 산사태 발생초기와 종기시의 평균 일강우량을 적용하였다. 대상유역의 사면안정해석을 위해 격자별 안전률은 4개의 등급(unstable, quasi stable, moderately stable, stable)으로 구분하여 도시하였다. 산사태 발생인자별 분석결과, 무한사면안정해석기법을 이용하여 산정된 사면안전률은 사면경사에 매우 민감하게 반응하는 것으로 분석되었으며, 거주지 주변의 절개지 부근과 산지정상부근의 급경사지에서 불안정 지역이 집중적으로 분포하고 있음을 확인하였다.

  • PDF

Analysis of Landslide Occurrence Characteristics Based on the Root Cohesion of Vegetation and Flow Direction of Surface Runoff: A Case Study of Landslides in Jecheon-si, Chungcheongbuk-do, South Korea (식생의 뿌리 점착력과 지표유출의 흐름 조건을 고려한 산사태의 발생 특성 분석: 충청북도 제천지역의 사례를 중심으로)

  • Jae-Uk Lee;Yong-Chan Cho;Sukwoo Kim;Minseok Kim;Hyun-Joo Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.426-441
    • /
    • 2023
  • This study investigated the predictive accuracy of a model of landslide displacement in Jecheon-si, where a great number of landslides were triggered by heavy rain on both natural (non-clear-cut) and clear-cut slopes during August 2020. This was accomplished by applying three flow direction methods (single flow direction, SFD; multiple flow direction, MFD; infinite flow direction, IFD) and the degree of root cohesion to an infinite slope stability equation. The application assumed that the soil saturation and any changes in root cohesion occurred following the timber harvest (clear-cutting). In the study area, 830 landslide locations were identified via landslide inventory mapping from satellite images and 25 cm resolution aerial photographs. The results of the landslide modeling comparison showed the accuracy of the models that considered changes in the root cohesion following clear-cutting to be improved by 1.3% to 2.6% when compared with those not considered in the area under the receiver operating characteristics (AUROC) analysis. Furthermore, the accuracy of the models that used the MFD algorithm improved by up to 1.3% when compared with the models that used the other algorithms in the AUROC analysis. These results suggest that the discriminatory application of the root cohesion, which considers changes in the vegetation condition, and the selection of the flow direction method may influence the accuracy of landslide predictive modeling. In the future, the results of this study should be verified by examining the root cohesion and its dynamic changes according to the tree species using the field hydrological monitoring technique.

Development of an Integrated Forecasting and Warning System for Abrupt Natural Disaster using rainfall prediction data and Ubiquitous Sensor Network(USN) (농촌지역 돌발재해 피해 경감을 위한 USN기반 통합예경보시스템 (ANSIM)의 개발)

  • Bae, Seung-Jong;Bae, Won-Gil;Bae, Yeon-Joung;Kim, Seong-Pil;Kim, Soo-Jin;Seo, Il-Hwan;Seo, Seung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2015
  • The objectives of this research have been focussed on 1) developing prediction techniques for the flash flood and landslide based on rainfall prediction data in agricultural area and 2) developing an integrated forecasting system for the abrupt disasters using USN based real-time disaster sensing techniques. This study contains following steps to achieve the objective; 1) selecting rainfall prediction data, 2) constructing prediction techniques for flash flood and landslide, 3) developing USN and communication network protocol for detecting the abrupt disaster suitable for rural area, & 4) developing mobile application and SMS based early warning service system for local resident and tourist. Local prediction model (LDAPS, UM1.5km) supported by Korean meteorological administration was used for the rainfall prediction by considering spatial and temporal resolution. NRCS TR-20 and infinite slope stability analysis model were used to predict flash flood and landslide. There are limitations in terms of communication distance and cost using Zigbee and CDMA which have been used for existing disaster sensors. Rural suitable sensor-network module for water level and tilting gauge and gateway based on proprietary RF network were developed by consideration of low-cost, low-power, and long-distance for communication suitable for rural condition. SMS & mobile application forecasting & alarming system for local resident and tourist was set up for minimizing damage on the critical regions for abrupt disaster. The developed H/W & S/W for integrated abrupt disaster forecasting & alarming system was verified by field application.