• Title/Summary/Keyword: infinite plate model

Search Result 34, Processing Time 0.022 seconds

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate (무한 평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Oh, Joon-Seok;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.168-176
    • /
    • 2007
  • The mixture sound speed in bubbly fluids is highly dispersive due to differences of the density and compressibility between bubbles and fluids. The dispersion range in bubbly fluids expands to a higher frequency than the resonance frequency of an air bubble. A theoretical model was developed to compute the reduction of radiation noise that is generated by a force applied on an infinite flat plate using a bubble layer as a compliant baffle. For evaluating the effectiveness of a bubble layer in reducing the structure-borne noise of an infinite elastic plate, the noise reduction levels for various parameters such as the thickness of bubble layers, the volume fractions and the distribution types of bubbly fluids are calculated numerically. The noise reduction effect of an air bubble layer on an infinite flat plate is considerable level and similar to the tendency of dispersion of bubbly fluids. It is recommended that the thickness of a bubble layer should be increased with keeping an appropriate volume fraction of an air bubble for the most effective reduction of the radiation noise.

ㄷ자형 개방형 단면부에 의해 보강되 등방성 평판의 음압레벨에 관한 연구

  • 김택현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.214-220
    • /
    • 1998
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise levels in aircraft fuselages and ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model for prediction the sound radiated by a vibration plate stiffened by periodically spaced orthogonal symmetric beams subjected to a sinusoidally time varying point load is developed. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Structural damping is included in both plate and beam materials. From this theoretical model, the sound pressure levels on axis in a semi-infinite fluid(water) bounded by the plate with the variation in the loactions of an external using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numerical package.

  • PDF

Three-dimensional Flexure Modeling by Seamount Loading in the Western Pacific: Infinite Plate Model (서태평양에 위치한 해저산들의 3-D flexure 모델링 : 무한지판 모델)

  • Lee, Tae-Gook;Moon, Jai-Woon;Chi, Sang-Bum;Park, Cheong-Kee;Lee, Kie-Hwa
    • Ocean and Polar Research
    • /
    • v.27 no.1
    • /
    • pp.35-44
    • /
    • 2005
  • The bathymetric and gravity data were obtained in 2001 and 2003 during a survey of seamounts in the northwest of the Marshall Islands, western Pacific. The study areas are located in the Pigafetta Basin which is the oldest part of the Pacific plate and in the Ogasawara Fracture Zone which formed from the spreading ridge between the Izanagi and Pacific plates in the Jurassic. The densities of seamounts and the elastic thickness values of the lithosphere are calculated by using three-dimensional flexure modeling considering the constant sediment layer in the infinite plate model. Very low elastic thickness values (5km), relatively young seamounts, and old lithosphere in the east study area suggest the possibility of the rejuvenation of lithosphere by widespread volcanisms, whereas the elastic thickness values (15km), relatively old seamounts, and young lithosphere of the west study area are suitable for a simple cooling plate model of $300-600^{\circ}C$ isotherm. The gravity residuals of OSM6-1 and OSM6-2 suggest the possibility of different load density or elastic thickness. Relatively older OSM6-2 formed on the younger lithosphere with relatively thin elastic thickness, while younger OSM6-1 on the older lithosphere with relatively thick elastic thickness.

A Study on Sound Radiation from Isofropic Plates Stiffened by Symmetrical Reinforced Beams (대칭형 보에 의해 보강된 등방성 평판의 음향방사에 관한 연구)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • The detemination of sound pressure radiated from peoriodic plate structures is fundamental in the estimation of noise levels in aircraft fuselages and ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal symmetric beams subjected to a sinusoidally time varying point load is developed. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Structural damping is included in both plate and beam materials. A space harmonic series representation of the spatial variables is used in conjunction with the Fourier transform to find the sound pressure in terms of harmonic coefficients. From this theoretical model. the sound pressure levels on axis in a semi-infinite fluid (water) bounded by the plate with the variation in the locations of an external time harmonic point force on the plate can be calculated efficiently using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numerical package.

  • PDF

On the Penetration Phenomena for Thin and Multi-Layered Finite Thickness Plates by a Long Rod Penetrator (긴 관통자에 의한 유한박판 및 적층표적재의 관통현상 연구)

  • 이창현;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1759-1772
    • /
    • 1994
  • In this study, we re-examined the Tate's modified Bernoulli equation to study penetration phenomena for long rod projectile into single or multi-layered finite thickness plates. We used the force equlibrium equation at mushroomed nose/target interface instead of conventional pressure equation at the stagnation point. In our penetration model, we considered the velocity dependent $R_t$ value for semi-infinite target and considered only the back face effect for finite target. To compensate for $R_t$ value according to target's thickness and back face effect, we used the spherical cavity expansion theory for semi-infinite plate and used the cylindrical cavity expansion theory for finite plate. Also we developed the experimental technique using make screen to measure the penetration duration time at each layered plate. In 3-layered laminated RHA/mild steel/ A1 7039 plate, we observed that spall had occured around the back face of A1 7039 plate by the stress wave interaction. Through the comparison between theoretical and experimental data including Lambert's results, we conform that our study has good confidences.

Wave Propagation in the Strip Plate with Longitudinal Stiffeners

  • Kim, H.;Ryue, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.102-107
    • /
    • 2013
  • It is important to understand the vibrating behavior of plate structures for many engineering applications. In this study, vibration characteristics of strip plates which have finite width and infinite length are investigated theoretically and numerically. The waveguide finite element approach is used in this study which is known as an effect tool for waveguide structures. WFE method requires only cross-sectional FE model and uses theoretical harmonic solutions for the wave propagation along the longitudinal direction. First of all for a simple strip plate, WFE results are compared with theoretical ones such as the dispersion diagrams, point mobilities, etc. to validate the numerical model. Then in the numerical analysis, the several different types of longitudinal stiffeners are included to the plate model to investigate the effects of the stiffeners in terms of the dispersion curves and mobilities.

  • PDF

Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate Considering the Noise of Multi-bubbles (다중기포 발생소음을 고려한 무한평판 주위에 형성된 수중 기포층의 방사소음 감소 효과)

  • Kim, Jong-Chul;Heo, Bo-Hyun;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1222-1230
    • /
    • 2009
  • A theoretical model was developed to compute the effect of a bubble layer in reducing the radiation noise generated by a force applied on an infinite flat plate considering the noise of multi-bubbles. Using the model, the effectiveness of a bubble layer in reducing the structure-borne noise of the plate was evaluated to consider various parameters such as the source noise levels, the thickness of bubble layers, the volume fractions and the frequency characteristics of bubbly fluids. Considering the noise of multi-bubbles, the actual reduction effect of radiation noise using a bubble layer was expected in cases of high source levels, high volume fractions of bubbles and large thickness of the bubble layer above the resonance frequency of the bubble layer. Accordingly, it is recommended that the thickness of a bubble layer, the source noise level and the characteristics of bubbly fluids should be optimized cautiously to maximize noise reduction effects.

Estimation of Plate Deformation in Thermal Processing using the Eigenstrain Concept (고유변형율의 개념을 이용한 열가공공정 시 판 변형 예측)

  • 손광재;양영수;장상균
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.54-59
    • /
    • 2003
  • In the present work, a formula for plate deformation produced by line heating, in terms of process parameters such as heat input and plate dimensions, is developed analytically using an eigenstrain concept. The residual deformation that was due to thermal process was depends on the magnitude and region of plastic strains at heating zone. The magnitude of plastic strains was determined by disk model and its region was calculated using the Rosenthal"s solution. The vertical displacement of the plate was analyzed by using an infinite laminated plate theory to consider a cuboidal inclusion with an eigenstrain. Comparison of the calculated results and experimental data shows the accuracy and validity of proposed method.thod.

A study on sound radiation from isotropic plates stiffened by unsymmetrical beams (비대칭 보에 의해 보강된 등방성 평판의 음향방상에 관한 연구)

  • Kim, Taek-Hyun;Oh, Taek-Yul;Kim, Jong-Tye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.753-761
    • /
    • 1998
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise level in aircraft fuselages or ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model is developed for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal unsymmetrical beams subjected to a sinusoidally time varying point load. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Using this theoretical model, the sound pressure levels on axis in a semi-infinited fluid (water) bounded by the plate were calculated using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numberial package. Especially, the variation in the sound pressure levels and their modes were investigated according to the change in frequency, bay spacing and bay distance.

Optical Phase Properties of Small Numbers of Nanoslits and an Application for Higher-efficiency Fresnel Zone Plates

  • Kim, Hyuntai;Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.285-291
    • /
    • 2019
  • We have studied the behavior of light in the intermediate regime between a single nanoslit and an infinite nanoslit array. We first calculated the optical characteristics of a small number of nanoslits using finite element numerical analysis. The phase variance of the proposed nanoslit model shows a gradual phase shift between a single nanoslit and ideal nanoslit array, which stabilizes before the total array length becomes ${\sim}0.5{\lambda}$. Next, we designed a transmission-enhanced Fresnel zone plate by applying the phase characteristics from the small-number nanoslit model. The virtual-point-source method suggests that the proposed Fresnel zone plate with phase-invariant nanoslits achieves 2.34x higher transmission efficiency than a conventional Fresnel zone plate. Our report describes the intermediate behaviors of a nanoslit array, which could also benefit subwavelength metallic structure research of metasurfaces.